Skip to main content

Advertisement

Log in

Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effective transplant-mediated repair of ischemic brain lesions entails extensive tissue remodeling, especially in the ischemic core. Neural stem cells (NSCs) are promising reparative candidates for stroke induced lesions, however, their survival and integration with the host-tissue post-transplantation is poor. In this study, we address this challenge by testing whether co-grafting of NSCs with olfactory ensheathing cells (OECs), a special type of glia with proven neuroprotective, immunomodulatory, and angiogenic effects, can promote graft survival and host tissue remodelling. Transient focal cerebral ischemia was induced in adult rats by a 60-min middle cerebral artery occlusion (MCAo) followed by reperfusion. Ischemic lesions were verified by neurological testing and magnetic resonance imaging. Transplantation into the globus pallidus of NSCs alone or in combination with OECs was performed at two weeks post-MCAo, followed by histological analyses at three weeks post-transplantation. We found evidence of extensive vascular remodelling in the ischemic core as well as evidence of NSC motility away from the graft and into the infarct border in severely lesioned animals co-grafted with OECs. These findings support a possible role of OECs as part of an in situ tissue engineering paradigm for transplant mediated repair of ischemic brain lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17:1391–1401

    Article  CAS  PubMed  Google Scholar 

  3. Fisher M (2004) The ischemic penumbra: identification, evolution and treatment concepts. Cerebrovasc Dis 17(Suppl 1):1–6

    PubMed  Google Scholar 

  4. Robinson T, Zaheer Z, Mistri AK (2011) Thrombolysis in acute ischaemic stroke: an update. Ther Adv Chronic Dis 2:119–131

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen L, Qiu R, Li L, He D, Lv H, Wu X, Gu N (2014) The role of exogenous neural stem cells transplantation in cerebral ischemic stroke. J Biomed Nanotechnol 10:3219–3230

    Article  CAS  PubMed  Google Scholar 

  6. Jendelova P, Kubinova S, Sandvig I, Erceg S, Sandvig A, Sykova E (2016) Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther 16:43–56

    Article  CAS  PubMed  Google Scholar 

  7. Bible E, Qutachi O, Chau DY, Alexander MR, Shakesheff KM, Modo M (2012) Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials 33:7435–7446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patkar S, Tate R, Modo M, Plevin R, Carswell HV (2012) Conditionally immortalised neural stem cells promote functional recovery and brain plasticity after transient focal cerebral ischaemia in mice. Stem Cell Res 8:14–25

    Article  CAS  PubMed  Google Scholar 

  9. Smith EJ, Stroemer RP, Gorenkova N, Nakajima M, Crum WR, Tang E, Stevanato L, Sinden JD, Modo M (2012) Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem cells (Dayton, Ohio) 30:785–796

  10. De Feo D, Merlini A, Laterza C, Martino G (2012) Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol 25:322–333

    Article  PubMed  Google Scholar 

  11. Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15:1078–1087

    Article  CAS  PubMed  Google Scholar 

  12. Andres RH, Choi R, Steinberg GK, Guzman R (2008) Potential of adult neural stem cells in stroke therapy. Regen Med 3:893–905

    Article  PubMed  Google Scholar 

  13. Franklin RJ, Barnett SC (2000) Olfactory ensheathing cells and CNS regeneration: the sweet smell of success? Neuron 28:15–18

    Article  CAS  PubMed  Google Scholar 

  14. Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y (2012) Olfactory ensheathing cells rescue optic nerve fibers in a rat glaucoma model. Transl Vis Sci Technol 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li J, Chen W, Li Y, Chen Y, Ding Z, Yang D, Zhang X (2015) Transplantation of olfactory ensheathing cells promotes partial recovery in rats with experimental autoimmune encephalomyelitis. Int J Clin Exp Pathol 8:11149–11156

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Li D, Raisman G (2016) Functional repair of rat corticospinal tract lesions does not require permanent survival of an immunoincompatible transplant. Cell Transplant 25:293–299

    PubMed  Google Scholar 

  17. Toft A, Scott DT, Barnett SC, Riddell JS (2007) Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain 130:970–984

    Article  PubMed  Google Scholar 

  18. Toft A, Tome M, Lindsay SL, Barnett SC, Riddell JS (2012) Transplant-mediated repair properties of rat olfactory mucosal OM-I and OM-II sphere-forming cells. J Neurosci Res 90:619–631

    Article  CAS  PubMed  Google Scholar 

  19. Sandvig I, Thuen M, Hoang L, Olsen O, Sardella TC, Brekken C, Tvedt KE, Barnett SC, Haraldseth O, Berry M, Sandvig A (2012) In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR Biomed 25:620–631

    Article  PubMed  Google Scholar 

  20. Lakatos A, Franklin RJ, Barnett SC (2000) Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia 32:214–225

    Article  CAS  PubMed  Google Scholar 

  21. Lakatos A, Barnett SC, Franklin RJ (2003) Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol 184:237–246

    Article  CAS  PubMed  Google Scholar 

  22. Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li D, Szewczyk P, Okurowski S, Miedzybrodzki R, Czapiga B, Salomon B, Halon A, Li Y, Lipiec J, Kulczyk A, Jarmundowicz W (2014) Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 23:1631–1655

    Article  PubMed  Google Scholar 

  23. Li Y, Carlstedt T, Berthold CH, Raisman G (2004) Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Exp Neurol 188:300–308

    Article  PubMed  Google Scholar 

  24. Chuah MI, Hale DM, West AK (2011) Interaction of olfactory ensheathing cells with other cell types in vitro and after transplantation: glial scars and inflammation. Exp Neurol 229:46–53

    Article  PubMed  Google Scholar 

  25. Memezawa H, Smith ML, Siesjo BK (1992) Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559

    Article  CAS  PubMed  Google Scholar 

  26. Haberg A, Qu H, Haraldseth O, Unsgard G, Sonnewald U (1998) In vivo injection of [1-13C]glucose and [1,2-13C]acetate combined with ex vivo 13C nuclear magnetic resonance spectroscopy: a novel approach to the study of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:1223–1232

    Article  CAS  PubMed  Google Scholar 

  27. Modo M, Rezaie P, Heuschling P, Patel S, Male DK, Hodges H (2002) Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res 958:70–82

    Article  CAS  PubMed  Google Scholar 

  28. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  CAS  PubMed  Google Scholar 

  29. Massensini AR, Ghuman H, Saldin LT, Medberry CJ, Keane TJ, Nicholls FJ, Velankar SS, Badylak SF, Modo M (2015) Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomaterialia 27:116–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feigin VL, Barker-Collo S, Krishnamurthi R, Theadom A, Starkey N (2010) Epidemiology of ischaemic stroke and traumatic brain injury. Best Pract Res Clin Anaesthesiol 24:485–494

    Article  PubMed  Google Scholar 

  31. Liu SJ, Zou Y, Belegu V, Lv LY, Lin N, Wang TY, McDonald JW, Zhou X, Xia QJ, Wang TH (2014) Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 11:66

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shukla S, Chaturvedi RK, Seth K, Roy NS, Agrawal AK (2009) Enhanced survival and function of neural stem cells-derived dopaminergic neurons under influence of olfactory ensheathing cells in parkinsonian rats. J Neurochem 109:436–451

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Li D, Raisman G (2005) Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the ‘pathway hypothesis’. J Neurocytol 34:343–351

    Article  PubMed  Google Scholar 

  34. Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC, Zhang XF (2007) Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Med Hypotheses 69:1234–1237

    Article  CAS  PubMed  Google Scholar 

  35. Wang G, Ao Q, Gong K, Zuo H, Gong Y, Zhang X (2010) Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury. Cell Transplant 19:1325–1337

    Article  PubMed  Google Scholar 

  36. Coralli C, Cemazar M, Kanthou C, Tozer GM, Dachs GU (2001) Limitations of the reporter green fluorescent protein under simulated tumor conditions. Cancer Res 61:4784–4790

    CAS  PubMed  Google Scholar 

  37. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, Price J, Hodges H (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17:803–811

    Article  PubMed  Google Scholar 

  39. Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J, Williams SC (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317

    Article  PubMed  Google Scholar 

  40. Zhu WZ, Li X, Qi JP, Tang ZP, Wang W, Wei L, Lei H (2008) Experimental study of cell migration and functional differentiation of transplanted neural stem cells co-labeled with superparamagnetic iron oxide and BrdU in an ischemic rat model. Biomed Environ Sci 21:420–424

    Article  PubMed  Google Scholar 

  41. Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129

    Article  CAS  PubMed  Google Scholar 

  42. Barnett SC, Riddell JS (2007) Olfactory ensheathing cell transplantation as a strategy for spinal cord repair–what can it achieve? Nature clinical practice. Neurology 3:152–161

    PubMed  Google Scholar 

  43. Barnett SC, Riddell JS (2004) Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat 204:57–67

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ding DC, Lin CH, Shyu WC, Lin SZ (2013) Neural stem cells and stroke. Cell Transplant 22:619–630

    Article  PubMed  Google Scholar 

  45. Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK (2010) Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 1:17

  46. Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, Capela A, Greve J, Malenka RC, Moseley ME, Palmer TD, Steinberg GK (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA 104:10211–10216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38:840–845

    Article  PubMed  Google Scholar 

  48. Reglodi D, Tamas A, Lengvari I (2003) Examination of sensorimotor performance following middle cerebral artery occlusion in rats. Brain Res Bull 59:459–466

    Article  CAS  PubMed  Google Scholar 

  49. Schaar KL, Brenneman MM, Savitz SI (2010) Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  50. Doeppner TR, Kaltwasser B, Teli MK, Sanchez-Mendoza EH, Kilic E, Bahr M, Hermann DM (2015) Post-stroke transplantation of adult subventricular zone derived neural progenitor cells—a comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp Neurol 273:45–56

    Article  PubMed  Google Scholar 

  51. Mine Y, Tatarishvili J, Oki K, Monni E, Kokaia Z, Lindvall O (2013) Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol Dis 52:191–203

    Article  CAS  PubMed  Google Scholar 

  52. Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Dev Ther 9:3445–3454

    Google Scholar 

  53. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30:1412–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kazanis I, Gorenkova N, Zhao JW, Franklin RJ, Modo M, Ffrench-Constant C (2013) The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche. Exp Neurol 248:387–397

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K, Sandvig A, Skjak-Braek G, Strand BL (2014) RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res Part A 103:896–906

  56. Janowski M, Wagner DC, Boltze J (2015) Stem cell-based tissue replacement after stroke: factual necessity or notorious fiction? Stroke 46:2354–2363

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ILA, AKH, AS, and IS would like to acknowledge funding by the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology—Samarbeidsorganet HMN-NTNU. Additionally, IS and AS acknowledge funding by the Norwegian Financial Mechanism 2009–2014 and the Czech Ministry of Education, Youth and Sports under Project Contract No. MSMT-28477/2014, Project 7F14057. The authors would like to thank Dr. Marius Widerøe for technical assistance with setting up the MR scanning parameters. Many thanks to Professors Berit Strand and Michel Modo for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asta Kristine Håberg.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Ingrid Lovise Augestad and Axel Karl Gottfrid Nyman have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augestad, I.L., Nyman, A.K.G., Costa, A.I. et al. Effects of Neural Stem Cell and Olfactory Ensheathing Cell Co-transplants on Tissue Remodelling After Transient Focal Cerebral Ischemia in the Adult Rat. Neurochem Res 42, 1599–1609 (2017). https://doi.org/10.1007/s11064-016-2098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2098-3

Keywords

Navigation