Skip to main content

Advertisement

Log in

Blocking Sympathetic Nervous System Reverses Partially Stroke-Induced Immunosuppression but does not Aggravate Functional Outcome After Experimental Stroke in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stoke results in activation of the sympathetic nervous system (SNS), inducing systemic immunosuppression. However, the potential mechanisms underlying stroke-induced immunosuppression remain unclear. Here, we determined the SNS effects on functional outcome and explored the interactions among SNS, β-arrestin2 and nuclear factor-κB (NF-κB) after experimental stroke in rats. In the current study, stroke was induced by a transient middle cerebral artery occlusion (MCAO) in rats, and SNS activity was inhibited by intraperitoneal injection of 6-hydroxydopamine HBr (6-OHDA). 7.0 T Micro-MRI and Longa score were employed to assess the functional outcome after stroke. Flow cytometry and ELISA assay were used to measure the expression of MHC class II, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Western blot was conducted to analyze β-arrestin2 and NF-κB protein expression levels after experimental stroke. We found significantly increased infarct volumes and functional impairment after MCAO at different post-surgery time points, which were not aggravated by 6-OHDA treatment. SNS blockade partially reversed the expression of MHC class II after stroke over time, as well as TNF-α and IFN-γ levels in lipopolysaccharide-stimulated macrophages in vitro. Treatment of MCAO rats with SNS-inhibitor significantly diminished NF-κB activation and enhanced β-arrestin2 expression after stroke. This study suggests that pharmacological SNS inhibition dose not aggravate functional outcome after stroke. Stroke-induced immunosuppression may be involved in the SNS–β-arrestin2–NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SNS:

Sympathetic nervous system

NF-κB:

Nuclear factor-κB

MCAO:

Middle cerebral artery occlusion

TNF-α:

Tumor necrosis factor-α

IFN-γ:

Interferon-γ

LPS:

Lipopolysaccharide

MRI:

Magnetic resonance imaging

SPF:

Specific pathogen-free

6-OHDA:

6-Hydroxydopamine HBr

EDTA:

Ethylenediaminetetraacetate

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

ELISA:

Enzyme-linked immunosorbent assays

AM:

Alveolar macrophage

β2AR:

β2-Adrenergic receptor

References

  1. Katzan IL, Cebul RD, Husak SH, Dawson NV, Baker DW (2003) The effect of pneumonia on mortality among patients hospitalized for acute stroke. Neurology 60(4):620–625

    Article  CAS  PubMed  Google Scholar 

  2. Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones L, McAlpine C et al (2000) Medical complications after stroke: a multicenter study. Stroke 31(6):1223–1229

    Article  CAS  PubMed  Google Scholar 

  3. Koennecke HC, Belz W, Berfelde D, Endres M, Fitzek S, Hamilton F et al (2011) Factors influencing in-hospital mortality and morbidity in patients treated on a stroke unit. Neurology 77(10):965–972. doi:10.1212/WNL.0b013e31822dc795

    Article  PubMed  Google Scholar 

  4. Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, Gomez-Choco M et al (2007) Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci 252(1):29–35. doi:10.1016/j.jns.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  5. Meisel C, Meisel A (2011) Suppressing immunosuppression after stroke. N Engl J Med 365(22):2134–2136. doi:10.1056/NEJMcibr1112454

    Article  CAS  PubMed  Google Scholar 

  6. Wong CH, Jenne CN, Lee WY, Leger C, Kubes P (2011) Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334(6052):101–105. doi:10.1126/science.1210301

    Article  CAS  PubMed  Google Scholar 

  7. Hattori Y, Moriwaki A, Hori Y (1990) Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett 116(3):320–324

    Article  CAS  PubMed  Google Scholar 

  8. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U et al (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10(5):471–480. doi:10.1016/S1474-4422(11)70066-7

    Article  CAS  PubMed  Google Scholar 

  9. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6(10):775–786. doi:10.1038/nrn1765

    Article  CAS  PubMed  Google Scholar 

  10. Woiciechowsky C, Schoning B, Lanksch WR, Volk HD, Docke WD (1999) Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med (Berl). 77(11):769–780

    Article  CAS  PubMed  Google Scholar 

  11. Czlonkowska A, Cyrta B, Korlak J (1979) Immunological observations on patients with acute cerebral vascular disease. J Neurol Sci 43(3):455–464

    Article  CAS  PubMed  Google Scholar 

  12. Chamorro A, Urra X, Planas AM (2007) Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38(3):1097–1103. doi:10.1161/01.STR.0000258346.68966.9d

    Article  PubMed  Google Scholar 

  13. Klehmet J, Harms H, Richter M, Prass K, Volk HD, Dirnagl U et al (2009) Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial. Neuroscience 158(3):1184–1193. doi:10.1016/j.neuroscience.2008.07.044

    Article  CAS  PubMed  Google Scholar 

  14. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T et al (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198(5):725–736. doi:10.1084/jem.20021098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761. doi:10.1038/nri3088

    Article  CAS  PubMed  Google Scholar 

  17. Barron L, Wynn TA (2011) Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol 300(5):G723–G728. doi:10.1152/ajpgi.00414.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. doi:10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  19. Ivashkiv LB (2011) Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur J Immunol 41(9):2477–2481. doi:10.1002/eji.201141783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alvira CM (2014) Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. Birth Defects Res A Clin Mol Teratol 100(3):202–216. doi:10.1002/bdra.23233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B et al (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14(3):303–317

    Article  CAS  PubMed  Google Scholar 

  22. Grailer JJ, Haggadone MD, Sarma JV, Zetoune FS, Ward PA (2014) Induction of M2 regulatory macrophages through the beta2-adrenergic receptor with protection during endotoxemia and acute lung injury. J Innate Immun 6(5):607–618. doi:10.1159/000358524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feibel JH, Hardy PM, Campbell RG, Goldstein MN, Joynt RJ (1977) Prognostic value of the stress response following stroke. JAMA 238(13):1374–1376

    Article  CAS  PubMed  Google Scholar 

  24. Yan FL, Zhang JH (2014) Role of the sympathetic nervous system and spleen in experimental stroke-induced immunodepression. Med Sci Monit 20:2489–2496. doi:10.12659/MSM.890844

    Article  PubMed  PubMed Central  Google Scholar 

  25. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91

    Article  CAS  PubMed  Google Scholar 

  26. Gerriets T, Stolz E, Walberer M, Muller C, Kluge A, Bachmann A et al (2004) Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35(2):566–571. doi:10.1161/01.STR.0000113692.38574.57

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M et al (2015) Cerebral ischemia increases bone marrow CD4+ CD25+ FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain Behav Immun 43:172–183. doi:10.1016/j.bbi.2014.07.022

    Article  PubMed  Google Scholar 

  28. Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S et al (2014) The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun 38:100–110. doi:10.1016/j.bbi.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  29. Zhang DP, Yan FL, Xu HQ, Zhu YX, Yin Y, Lu HQ (2009) A decrease of human leucocyte antigen-DR expression on monocytes in peripheral blood predicts stroke-associated infection in critically-ill patients with acute stroke. Eur J Neurol 16(4):498–505. doi:10.1111/j.1468-1331.2008.02512.x

    Article  CAS  PubMed  Google Scholar 

  30. Reddy DB, Reddanna P (2009) Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochem Biophys Res Commun 381(1):112–117. doi:10.1016/j.bbrc.2009.02.022

    Article  CAS  PubMed  Google Scholar 

  31. Lee KW, Lee Y, Kim DS, Kwon HJ (2006) Direct role of NF-kappaB activation in Toll-like receptor-triggered HLA-DRA expression. Eur J Immunol 36(5):1254–1266. doi:10.1002/eji.200535577

    Article  CAS  PubMed  Google Scholar 

  32. Failli V, Kopp MA, Gericke C, Martus P, Klingbeil S, Brommer B et al (2012) Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 135(Pt 11):3238–3250. doi:10.1093/brain/aws267

    Article  PubMed  Google Scholar 

  33. Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B (2001) Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology 57(5):833–838

    Article  CAS  PubMed  Google Scholar 

  34. Meyer JS, Stoica E, Pascu I, Shimazu K, Hartmann A (1973) Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and haemorrhage. Brain 96(2):277–288

    Article  CAS  PubMed  Google Scholar 

  35. Sander D, Klingelhofer J (1995) Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. J Neurol 242(5):313–318

    Article  CAS  PubMed  Google Scholar 

  36. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC (2005) Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab 25(12):1634–1644. doi:10.1038/sj.jcbfm.9600160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bornstein NM, Aronovich B, Korczyn AD, Shavit S, Michaelson DM, Chapman J (2001) Antibodies to brain antigens following stroke. Neurology 56(4):529–530

    Article  CAS  PubMed  Google Scholar 

  38. Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA (2003) Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 49(10):1752–1762

    Article  CAS  PubMed  Google Scholar 

  39. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T et al (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842. doi:10.1182/blood-2009-10-249078

    Article  CAS  PubMed  Google Scholar 

  40. Romer C, Engel O, Winek K, Hochmeister S, Zhang T, Royl G et al (2015) Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J Neurosci 35(20):7777–7794. doi:10.1523/JNEUROSCI.1532-14.2015

    Article  PubMed  Google Scholar 

  41. Hauben E, Nevo U, Yoles E, Moalem G, Agranov E, Mor F et al (2000) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355(9200):286–287

    Article  CAS  PubMed  Google Scholar 

  42. Lewitus GM, Kipnis J, Avidan H, Ben-Nun A, Schwartz M (2006) Neuroprotection induced by mucosal tolerance is epitope-dependent: conflicting effects in different strains. J Neuroimmunol 175(1–2):31–38. doi:10.1016/j.jneuroim.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  43. Becker KJ, McCarron RM, Ruetzler C, Laban O, Sternberg E, Flanders KC et al (1997) Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci USA 94(20):10873–10878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5(1):49–55. doi:10.1038/4734

    Article  CAS  PubMed  Google Scholar 

  45. Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC et al (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 22(7):2690–2700

    CAS  PubMed  Google Scholar 

  46. Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B (1994) Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 265(5168):106–109

    Article  CAS  PubMed  Google Scholar 

  47. Baldwin AS Jr (2001) Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest 107(1):3–6. doi:10.1172/JCI11891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683. doi:10.1146/annurev.immunol.14.1.649

    Article  CAS  PubMed  Google Scholar 

  49. van der Poll T, Jansen J, Endert E, Sauerwein HP, van Deventer SJ (1994) Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood. Infect Immun 62(5):2046–2050

    PubMed  PubMed Central  Google Scholar 

  50. Feng D, Ling WH, Duan RD (2010) Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappaB in macrophages. Inflamm Res 59(2):115–121. doi:10.1007/s00011-009-0077-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (No. 81271336).

Authors’ contributions

Q.-W.D. participated in the design of the study and performed the statistical analysis. H.W. carried out animal experiments and cell culture. H.Y., F.-L.X. L.Z. and H.-Q.Z. performed other experiments and prepared figures. F.-L.Y. conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ling Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental procedures were conducted in accordance with the US National Institutes of Health guidelines and were approved by the Southeast University Committee for the Use and Care of Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, QW., Yang, H., Yan, FL. et al. Blocking Sympathetic Nervous System Reverses Partially Stroke-Induced Immunosuppression but does not Aggravate Functional Outcome After Experimental Stroke in Rats. Neurochem Res 41, 1877–1886 (2016). https://doi.org/10.1007/s11064-016-1899-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1899-8

Keywords

Navigation