Skip to main content

Advertisement

Log in

Proof-of Concept that an Acute Trophic Factors Intervention After Spinal Cord Injury Provides an Adequate Niche for Neuroprotection, Recruitment of Nestin-Expressing Progenitors and Regeneration

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 May 2016

Abstract

Trophic factor treatment has been shown to improve the recovery of brain and spinal cord injury (SCI). In this study, we examined the effects of TSC1 (a combination of insulin-like growth factor 1 and transferrin) 4 and 8 h after SCI at the thoracic segment level (T12) in nestin-GFP transgenic mice. TSC1 treatment for 4 and 8 h increased the number of nestin-expressing cells around the lesion site and prevented Wallerian degeneration. Treatment with TSC1 for 4 h significantly increased heat shock protein (HSP)-32 and HSP-70 expression 1 and 2 mm from lesion site (both, caudal and rostral). Conversely, the number of HSP-32 positive cells decreased after an 8-h TSC1 treatment, although it was still higher than in both, non-treated SCI and intact spinal cord animals. Furthermore, TSC1 increased NG2 expressing cell numbers and preserved most axons intact, facilitating remyelination and repair. These results support our hypothesis that TSC1 is an effective treatment for cell and tissue neuroprotection after SCI. An early intervention is crucial to prevent secondary damage of the injured SC and, in particular, to prevent Wallerian degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nelson E, Gertz SD, Rennels ML, Ducker TB, Blaumanis OR (1997) Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch Neurol 34:332–333

    Article  Google Scholar 

  2. Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine 25(14):1859–1866

    Article  CAS  PubMed  Google Scholar 

  3. Chang H, Wo JP, Tzeng SF (2002) Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neuro Res 69:397–405

    Article  Google Scholar 

  4. McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425

    Article  PubMed  Google Scholar 

  5. Beattie MS, Bresnahan JC, Komon J et al (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148(2):453–463

    Article  CAS  PubMed  Google Scholar 

  6. Grossman SD, Rosenberg LJ, Wrathall JR (2001) Relationship of altered glutamate receptor subunit mRNA expression to acute cell loss after spinal cord contusion. Exp Neurol 168(2):283–289

    Article  CAS  PubMed  Google Scholar 

  7. McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63(2):109–158

    Article  CAS  PubMed  Google Scholar 

  8. Rosenberg LJ, Zai LJ, Wrathall JR (2005) Chronic alterations in the cellular composition of spinal cord white matter following contusion injury. Glia 49(1):107–120

    Article  PubMed  Google Scholar 

  9. Sharma HS, Gordh T, Wiklund L, Mohanty S, Sjoquist PO (2005) Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51. An experimental study using light and electron microscopy in the rat. J Neural Trans 113:521–536

    Article  Google Scholar 

  10. Sharma HS (2007) A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury. Ann N Y Acad Sci. 1122:95–111

    Article  CAS  PubMed  Google Scholar 

  11. Yenari MA (2002) Heat shock proteins and neuroprotection. Adv Exp Med Biol 513:281–299

    Article  CAS  PubMed  Google Scholar 

  12. Houenou LJ, Li L, Lei M, Kent CR, Tytell M (1996) Exogenous heat shock cognate protein Hsc 70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperones 1(3):161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mautes AE, Bergeron M, Sharp FR, Panter SS, Weinzierl M, Guenther K, Noble LJ (2000) Sustained induction of heme oxygenase-1 in the traumatized spinal cord. Exp Neurol 166(2):254–265

    Article  CAS  PubMed  Google Scholar 

  14. Carama NOS, Soares MP (2005) Heme oxygenase-1 (HO-1), a protective gene that prevents chronic graft dysfunction. Free Radic Biol Med 38(4):426–435

    Article  Google Scholar 

  15. Woerly S, Awosika O, Zhao P, Agbo C, Gomez-Pinilla F, de Vellis J, Espinosa-Jeffrey A (2005) Expression of heat shock protein (HSP)-25 and HSP-32 in the rat spinal cord reconstructed with Neurogel. Neurochem Res 30(6–7):721–735

    Article  CAS  PubMed  Google Scholar 

  16. Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K (1998) Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 29(7):1417–1422

    Article  CAS  PubMed  Google Scholar 

  17. Lee TT, Green BA, Dietrich WD, Yezierski RP (1999) Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat. J Neurotrauma 16(5):347–356

    Article  CAS  PubMed  Google Scholar 

  18. Watabe K, Ohashi T, Sakamoto T, Kawazoe Y, Takeshima T, Oyanagi K, Inoue K, Eto Y, Kim SU (2000) Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor. J Neurosci Res 60:511–519

    Article  CAS  PubMed  Google Scholar 

  19. Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (2000) Neurotrophic factors influence upregulation of constitutive isoform of heme oxygenase and cellular stress response in the spinal cord following trauma. Amino Acids 19:351–361

    Article  CAS  PubMed  Google Scholar 

  20. Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neurosci 9:1371–1381

    Article  PubMed  Google Scholar 

  21. Espinosa de los Monteros A, Chiapelli F, Fisher RS, de Vellis J (1988) Transferrin: an early marker of oligodendrocytes in culture. Int J Dev Neurosci 6:167–175

    Article  CAS  PubMed  Google Scholar 

  22. Espinosa de los Monteros A, Kumar S, Zhao P, Huang CJ, Nazarian R, Pan T, Scully S, Chang R, de Vellis J (1999) Transferrin is an essential factor for myelination. Neurochem Res 24(2):235–248

    CAS  PubMed  Google Scholar 

  23. Morgan EH (1996) Molecular iron processing. J Gastroenterol Hepatol 11:1027–1030

    Article  CAS  PubMed  Google Scholar 

  24. Morgan EH, Moos T (2002) Mechanism and developmental changes in iron transport across the blood–brain barrier. Dev Neurosci 24:106–113

    Article  CAS  PubMed  Google Scholar 

  25. Moos T (2002) Brain iron homeostasis. Dan Med Bull 49:279–301

    CAS  PubMed  Google Scholar 

  26. Espinosa-Jeffrey A, Zhao PM, Awosika O, Huang A, Chang R, de Vellis J (2002) Transferrin regulates transcription of the MBP gene and its action synergizes with IGF-1 to enhance myelinogenesis in the md rat. Dev Neurosci 24(2–3):227–241

    Article  CAS  PubMed  Google Scholar 

  27. Espinosa-Jeffrey A, Zhao P, Awosika W, Wu N, Macias F, Cepeda C, Levine M, de Vellis J (2006) Activation, proliferation and commitment of endogenous, stem/progenitor cells to the oligodendrocyte lineage by a combination of neurotrophic factors in a rat model of dysmyelination. Dev Neurosci 28(6):488–498

    Article  CAS  PubMed  Google Scholar 

  28. Paez PM, Garcia CI, Soto EF, Pasquini JM (2006) Apotransferrin decreases the response of oligodendrocyte progenitors to PDGF and inhibits the progression of the cell cycle. Neurochem Inter 49:359–371

    Article  CAS  Google Scholar 

  29. Woerly S, Doan VD, Evans-Martin F, Paramore CG, Peduzzi JD (2001) Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J Neurosci Res 66(6):1187–1197

    Article  CAS  PubMed  Google Scholar 

  30. Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa-Jeffrey A (2004) Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. J Neurosci Res 75(2):262–272

    Article  CAS  PubMed  Google Scholar 

  31. Espinosa-Jeffrey A, Oregel K, Wiggins L, Valera R, Bosnoyan K, Agbo C, Awosika O, Zhao P, de Vellis J, Woerly S (2012) Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells. Adv Exp Med Biol 760:25–52

    Article  PubMed  Google Scholar 

  32. Espinosa-Jeffrey A, Barajas S, Arrazola A, Taniguchi A, Zhao P, Bokhoor P, Holley S, Dejarme D, Chu B, Cepeda C, Levine M, Gressens P, Feria-Velasco A, de Vellis J (2013) White matter loss in a mouse model of periventricular leukomalacia is rescued by trophic factors. Brain Sci 3(4):1461–1482

    Article  PubMed  PubMed Central  Google Scholar 

  33. Espinosa-Jeffrey A, Arrazola A, Chu B, Taniguchi A, Barajas S, Bokhoor P, Garcia J, Feria-Velasco A, de Vellis J (2015). J Neurosci Res (accepted)

  34. Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11:1991–1996

    Article  CAS  PubMed  Google Scholar 

  35. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  Google Scholar 

  36. Blesch A, Tuszynski MH (2009) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci 32:41–47

    Article  CAS  PubMed  Google Scholar 

  37. Yoon C, Tuszynski MH (2012) Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury. Adv Exp Med Biol 760:1–15

    Article  PubMed  Google Scholar 

  38. Kumar S, Biancotti JC, Matalon R, de Vellis J (2009) Lack of aspartoacylase activity disrupts survival differentiation of neural progenitors and oligodendrocytes in a mouse model of Canavan disease. J Neurosci Res 87(15):3415–3427

    Article  CAS  PubMed  Google Scholar 

  39. Espinosa-Jeffrey A, Hitoshi S, Zhao P, Awosika O, Agbo C, Olaniyan E, Garcia J, Valera R, Thomassian A, Chang-Wei R, Yamaguchi M, de Vellis J, Ikenaka K (2010). Functional central nervous system myelin repair in an adult mouse model of demyelination caused by proteolipid protein overexpression. J Neurosci Res 88(8):1682–1694. doi:10.1002/jnr.22334

    CAS  PubMed  Google Scholar 

  40. Richter-Landsberg C, Goldbaum O (2003) Stress proteins in neural cells: functional roles in health and disease. Cell Mol Life Sci 60:337–349

    Article  CAS  PubMed  Google Scholar 

  41. Panahian N, Maines MD (2001) Site of injury-directed induction of heme oxygenase-1 and -2 in experimental spinal cord injury: differential functions in neuronal defense mechanisms? J Neurochem 76:539–554

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Tachibana T, Dai Y, Kondo E, Fukuoka T, Yamanaka H, Noguchi K (2002) Heme oxygenase-1 expression after spinal cord injury: the induction in activated neutrophils. J Neurotrauma 19:479–490

    Article  PubMed  Google Scholar 

  43. Goldbaum O, Richter-Landsberg C (2001) Stress proteins in oligodendrocytes: differential effects of heat shock and oxidative stress. J Neurochem 78(6):1233–1242

    Article  CAS  PubMed  Google Scholar 

  44. Cizkova D, Lukacova N, Marsala M, Kafka J, Lukac I, Jergova S, Cizek M, Marsala J (2005) Experimental cauda equina compression induces HSP70 synthesis in dog. Physiol Res 54:349–356

    CAS  PubMed  Google Scholar 

  45. Carmel JB, Galate A, Soteropoulos P, Tolias P, Recce M, Young W, Hart RP (2001) Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Physiol Genom 7:201–213

    Article  CAS  Google Scholar 

  46. Ulrich HF (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  Google Scholar 

  47. Michels AA, Kanon B, Konings AWT, Ohtsuka K, Bensaude O, Kampinga HH (1997) Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Giol Chem 272:33283–33289

    CAS  Google Scholar 

  48. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  49. Steinert PM, Chou YH, Prahlad V, Parry DA, Marekov LN, Wu KC, Jang SI, Goldman RD (1999) A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein. Limited co-assembly in vitro to form heteropolymers with type III vimentin and type IV alpha-internexin. J Biol Chem 274(14):9881–9890

    Article  CAS  PubMed  Google Scholar 

  50. Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66(3):303–313

    CAS  PubMed  Google Scholar 

  51. Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58(8):721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23(28):9357–9366

    CAS  PubMed  Google Scholar 

  53. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  CAS  PubMed  Google Scholar 

  54. Shin YJ, Kim HL, Park JM, Cho JM, Kim SY, Lee MY (2013) Characterization of nestin expression and vessel association in the ischemic core following focal cerebral ischemia in rats. Cell Tissue Res 351(3):383–395

    Article  CAS  PubMed  Google Scholar 

  55. Mothe AJ, Tator CH (2005) Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131:177–187

    Article  CAS  PubMed  Google Scholar 

  56. Fernandez AM, Torres-Aleman I (2012). The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13(4):225–239. doi:10.1038/nrn3209

    Article  CAS  PubMed  Google Scholar 

  57. McMorris FA, Duboi-Dalcq M (1988) Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neurosci Res 21:199–209

    Article  CAS  PubMed  Google Scholar 

  58. McMorris FA, McKinnon RD (1996) Regulation of oligodendrocyte development and CNS myelination by growth factors: prospects for therapy of demyelinating disease. Brain Pathol 6:313–329

    Article  CAS  PubMed  Google Scholar 

  59. Werner H, Woloschak M, Adamo M, She-Orr Z, Roberts CT, LeRoith D (1989) Developmental regulation of the rat insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA 86:7451–7455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Madathil SK, Evans HN, Saatman KE (2010) Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J Neurotra 27:95–107

    Article  Google Scholar 

  61. Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2000) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134:115–122

    Article  Google Scholar 

  62. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M (2009) Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA 106:2029–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dubois-Dalcq Murray K (2000) Why are growth factors important in oligodendrocyte physiology? Pathol Biol (Paris) 48:80–86

    CAS  Google Scholar 

  64. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Kakashima K, Gage FH (2004) IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Espinosa de los Monteros A, Pena LA, de Vellis J (1989) Does transferrin have a special role in the nervous system? J Neurosci Res 24:125–136

    Article  CAS  PubMed  Google Scholar 

  66. Aizenman Y, Weichsel ME, de Vellis J (1986) Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development. Proc Natl Acad Sci USA 83:2263–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saneto RP, de Vellis J (1985) Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined médium. Proc Natl Acad Sci USA 82:3509–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Espinosa de los Monteros A, Zhang M, Gordon MN, Kumar S, Scully S, de Vellis J (1990) The myelin-deficient rat mutant: partial recovery of oligodendrocyte maturation in vitro. Dev Neurosci 12:326–339

    Article  CAS  PubMed  Google Scholar 

  69. Barres BA, Jacobson MD, Schmid R, Sendtner M, Raff MC (1993) Does oligodendrocyte survival depend on axons? Curr Biol 3:489–497

    Article  CAS  PubMed  Google Scholar 

  70. Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobio 70:443–462

    Article  CAS  Google Scholar 

  71. Aquino JB, Musolino PL, Coronel MF, Villar MJ, Setton-Avruj CP (2006) Nerve degeneration is prevented by a single intraneural apotransferrrin injection into colchicines-injured sciatic nerves in the rat. Brain Res 30:80–91

    Article  Google Scholar 

  72. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22

    Article  CAS  PubMed  Google Scholar 

  73. Maus F, Sakry D, Binamé F, Karram K, Rajalingam K, Watts C, Heywood R, Krüger R, Stegmüller J, Werner HB, Nave KA, Krämer-Albers EM, Trotter J (2015) The NG2 proteoglycan protects oligodendrocyte precursor cells against oxidative stress via interaction with OMI/HtrA2. PLoS ONE 10:e0137311

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yang Z, Suzuki R, Daniels SB, Brunquell CB, Sala CJ, Nishiyama A (2006) NG2 glial cells provide a favorable substrate for growing axons. J Neurosci 14:3829–3839

    Article  Google Scholar 

  75. Bareyre FM, Schwab ME (2003) Inflammation, degeneration and regeneration in the injury spinal cord: insights from DNA microarrays. Trend Neurosci 26:555–563

    Article  CAS  PubMed  Google Scholar 

  76. Totoiu MO, Keirstead HS (2005) Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol 486:373–383

    Article  PubMed  Google Scholar 

  77. McTigue D, Wei P, Stokes BT (2001) Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21:3392–3400

    CAS  PubMed  Google Scholar 

  78. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12

    Article  CAS  PubMed  Google Scholar 

  79. Aguirre A, Gallo V (2007) Reduced EGFR signaling in progenitor cells of the adult subventricular zone attenuates oligodendrogenesis after demyelination. Neuron Glia Biol 3:209–220

    Article  PubMed  PubMed Central  Google Scholar 

  80. Espinosa de los Monteros A, Zhao PM, de Vellis J (2001) In vitro injury model for oligodendrocytes: development, injury, and recovery. Micro Res Tech. 52:719–730

    Article  Google Scholar 

  81. Krityakiarana W, Espinosa-Jeffrey A, Ghiani C, Zhao M, Topaldjikian N, Gomez-Pinilla F, Yamaguchi M, Kotchabhakdi N, de Vellis J (2010) Voluntary exercise increases oligodendro-genesis in spinal cord. Int J Neurosci 120(4):280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Katic M, Kahn CR (2005) The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci 62(3):320–343

    Article  CAS  PubMed  Google Scholar 

  83. Klausner RD, Ashwell G, van Renswoude J, Harford JB, Bridges KR (1983) Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci USA 80:2263–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Klausner RD, Van Renswoude J, Ashwell G, Kempf C, Schechter AN, Dean A, Bridges KR (1983) Receptor-mediated endocytosis of transferrin in K562 cells. J Biol Chem 258:4715–4724

    CAS  PubMed  Google Scholar 

  85. Pantopoulos K, Hentze MW (1995) Rapid responses to oxidative stress mediated by iron regulatory protein. Embo J 14:2917–2924

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hill JM, Switzer RC 3rd (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11(3):595–603

    Article  CAS  PubMed  Google Scholar 

  87. Takeda A, Takatsuka K, Connor JR, Oku N (2002) Abnormal iron delivery to the bone marrow in neonatal hypotransferrinemic mice. Biometals 15:33–36

    Article  CAS  PubMed  Google Scholar 

  88. Zaleska MM, Floyd R (1985) Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res 10:397

    Article  CAS  PubMed  Google Scholar 

  89. Double KL, Gerlach M, Youdim MB, Riederer P (2000) Impaired iron homeostasis in Parkinson’s disease. J Neural Transm Suppl 60:37–58

    PubMed  Google Scholar 

  90. Pinero DJ, Hu J, Connor JR (2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell Mol Biol (Noisy-le-grand) 46:761–776

    CAS  Google Scholar 

  91. Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PM (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65:710–716

    Article  CAS  PubMed  Google Scholar 

  92. Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63(5):1085–1097

    Article  CAS  PubMed  Google Scholar 

  93. Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6(9):e1001114

    Article  PubMed  PubMed Central  Google Scholar 

  94. Guertin MJ, Petesch SJ, Zobeck KL, Min IM, Lis JT (2010) Drosophila heat shock system as ageneral model to investigate transcriptional regulation. Cold Spring Harb Symp Quant Biol 75:1–9

    Article  CAS  PubMed  Google Scholar 

  95. Sorger PL (1991) Heat shock factor and the heat shock response. Cell 65(3):363–366

    Article  CAS  PubMed  Google Scholar 

  96. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259(5100):1409–1410

    Article  CAS  PubMed  Google Scholar 

  97. Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA 88(16):6906–6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Prahlad V, Morimoto RI (2008) Intergrating the stress response: lessons for neurodegenerative diseases from C. elegans. Trends Cell Biol 19(2):52–61

    Article  PubMed  PubMed Central  Google Scholar 

  99. Guettouche T, Boellmann F, Lane WS, Richard Voellmy (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  100. Salamanca HH, Fuda N, Shi H, Lis JT (2011) An RNA aptamer perturbs heat shock transcription factor activity in drosophila melanogaster. Nucleic Acids Res 39(15):6729–6740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Salamanca HH, Antonyak MA, Cerione RA, Shi H, Lis JT (2014) Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS One 9(5):e96330

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Michael Sofroniew and his team for teaching us the spinal cord injury technique. We also thank Dr. Nuanchan Jutapakdeegul for their contribution to improve the quality of the article, Dorwin Birt for help with computer support and figure composites. This work was supported by NIH Grants: HD004612, HD006576 and scholarship from the University Development Program (UDP), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Araceli Espinosa-Jeffrey.

Appendix

Appendix

There are various signaling pathways involved in IGF-1 normal activity in the CNS. Ligand binding to IGF-1 receptors (IGF1Rs) triggers receptor autophosphorylation and association with docking proteins (not shown; for review see [82]. Upon cell injury (center of diagram) apoptosome formation is triggered by the release of cytochrome c from damaged mitochondria in response to either intrinsic or extrinsic cell death stimuli. The cytochrome binds to ATP-dependent proteolysis factor 1(Apf-1) monomeres which then create APF heptameres or heptamere apoptosomes. Recruitment of pro-caspase-9, either in the apoptosome or binding directly to Apf1, activates caspase 9, cleaves pro-caspase-3 and activates it. Caspase-3 breaks down cellular components for their recycling. Based on the reports from Wood and collaborators one can infer that in our experimental paradigm exogenous IGF-1 contained in TSC1 may prevent mitochondrial damage and cytochrome release blocking the caspase chain of events that lead to apoptosis (see text for details). The amount of iron (left part of the diagram) in cells is controlled by the cell surface transferrin receptor (TfR)-mediated uptake of iron as transferrin-iron. [83] TfR synthesis is regulated by interaction of the iron regulatory protein (IRP) with the iron-responsive element (IRE) present on the 3′ untranslated region of TfR mRNA. IRPs serve as sensors of cellular iron. [8385]. The cellular oxidative damage caused by reactive oxygen species and reactive nitrogen species is critically controlled by cellular iron homeostasis [85]. Exposure to H2O2, enhances the expression of TfR mRNA, where TfR appears to be the link between oxidative stress and TfR-mediated iron uptake. Transferrin (Tf) (left part of the diagram) is the iron carrier glycoprotein for all normal cells of mammalians. In circulation, it is saturated to around 30 % in adults. Thus, allowing for the chelation of iron radicals released after cell injury. In the CNS, Tf is synthesized by OLs and choroid plexus. Iron (Fe) is found in OLs and myelin in high density and both iron and Tf are required for myelin production [22, 85, 86]. As discussed by [87] and other authors, excess and/of free iron can be cytotoxic, by catalyzing the production of hydoxyl radicals from hydrogen peroxide [88]. Increased iron concentrations in the brain have been shown in neurodegenerative diseases, e.g. Alzheimer’s disease and Parkinson’s disease [89, 90] where oxidative stress has been proposed as a pathogenic mechanism of neurodegeneration. Conversely, brain Tf levels decrease with age and the decrease is dramatic when Alzheimer’s and Parkinson’s disease are superimposed on the aging process [91]. This stoichiometry of the iron related proteins Tf, ferritin and transferrin receptor (TFR) is essential to maintain CNS function. Upon OLPs and or myelin breakdown free iron is released. In our experimental model, Tf may act as a transient chelator while “Ferritin”, the iron storage protein, is synthesized (circle with red dots) helping prevent oxidative stress and lipid peroxidation. Heat shock factors (HSF) are transcriptional activators of heat shock HSP (P) genes [92]. These activators bind specifically to Heat Shock sequence Elements (HSE) throughout the genome [9398]. The Heat shock factor (HSF/HSF1) mediates the stress-induced expression of heat shock or stress proteins (HSPs). HSF/HSF1 is inactive in unstressed cells and it is activated during stress. Activation includes its hyperphosphorylation. Twelve Serine residues are phosphorylated in heat-activated HSF1 from which phosphorylation of HSF1 residue Ser326 plays a critical role in the induction of the factor’s transcriptional competence by heat stress and chemical stress. The functional role of other newly identified phosphor Ser residues remains unknown [99]. The Heat Shock sequence Element is highly conserved from yeast to humans. Heat shock factors (HSF) are transcriptional activators of heat shock genes. These activators bind specifically to Heat Shock sequence Elements (HSE) throughout the genome [93]. Although not shown in the diagram, eat shock proteins bind to the misfolded proteins and dissociate from HSF-1. This allows HSF1 to form trimers and translocate to the cell nucleus and activate transcription [7]. Its function is not only critical to overcome the proteotoxic effects of thermal stress, but also needed for proper animal development and the overall survival of cancer cells [100, 101]. It is worth mentioning that we have previously shown a synergistic effects of TSC1 as a neuroprotective agent. In the present work, we showed that a single dose of TSC1 was necessary and sufficient to increase the number of HSP-32-expressing cells most likely by HSF phosphorylation, hence promoting mitochondria homeostasis and energy management (Fig. 8).

Fig. 8
figure 8

Schematic representation of some mechanisms that may be modulated by TSC1 with respect to apoptosis and iron homeostasis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krityakiarana, W., Zhao, P.M., Nguyen, K. et al. Proof-of Concept that an Acute Trophic Factors Intervention After Spinal Cord Injury Provides an Adequate Niche for Neuroprotection, Recruitment of Nestin-Expressing Progenitors and Regeneration. Neurochem Res 41, 431–449 (2016). https://doi.org/10.1007/s11064-016-1850-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1850-z

Keywords

Navigation