Skip to main content
Log in

Efficacy of Hybrid Tetrahydrobenzo[d]thiazole Based Aryl Piperazines D-264 and D-301 at D2 and D3 Receptors

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In elucidating the role of pharmacodynamic efficacy at D3 receptors in therapeutic effectiveness of dopamine receptor agonists, the influence of study system must be understood. Here two compounds with D3 over D2 selectivity developed in our earlier work, D-264 and D-301, are compared in dopamine receptor-mediated G-protein activation in striatal regions of wild-type and D2 receptor knockout mice and in CHO cells expressing D2 or D3 receptors. In caudate-putamen of D2 knockout mice, D-301 was ~3-fold more efficacious than D-264 in activating G-proteins as assessed by [35S]GTPγS binding; in nucleus accumbens, D-301 stimulated G-protein activation whereas D-264 did not. In contrast, the two ligands exerted similar efficacy in both regions of wild-type mice, suggesting both ligands activate D2 receptors with similar efficacy. In D2 and D3 receptor-expressing CHO cells, D-264 and D-301 appeared to act in the [35S]GTPγS assay as full agonists because they produced maximal stimulation equal to dopamine. Competition for [3H]spiperone binding was then performed to determine Ki/EC50 ratios as an index of receptor reserve for each ligand. Action of D-301, but not D-264, showed receptor reserve in D3 but not in D2 receptor-expressing cells, whereas dopamine showed receptor reserve in both cell lines. Gαo1 is highly expressed in brain and is important in D2-like receptor-G protein coupling. Transfection of Gαo1 in D3- but not D2-expressing CHO cells led to receptor reserve for D-264 without altering receptor expression levels. D-301 and dopamine exhibited receptor reserve in D3-expressing cells both with and without transfection of Gαo1. Altogether, these results indicate that D-301 has greater intrinsic efficacy to activate D3 receptors than D-264, whereas the two compounds act on D2 receptors with similar intrinsic efficacy. These findings also suggest caution in interpreting Emax values from functional assays in receptor-transfected cell models without accounting for receptor reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sokoloff P, Diaz J, Le Foll B, Guillin O, Leriche L, Bezard E, Gross C (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5(1):25–43

    Article  CAS  PubMed  Google Scholar 

  2. Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T (2014) The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 5:47. doi:10.3389/fpsyt.2014.00047

    PubMed  PubMed Central  Google Scholar 

  3. Lahti RA, Roberts RC, Tamminga CA (1995) D2-family receptor distribution in human postmortem tissue: an autoradiographic study. NeuroReport 6(18):2505–2512

    Article  CAS  PubMed  Google Scholar 

  4. Stanwood GD, Lucki I, McGonigle P (2000) Differential regulation of dopamine D2 and D3 receptors by chronic drug treatments. J Pharmacol Exp Ther 295(3):1232–1240

    CAS  PubMed  Google Scholar 

  5. Hall H, Halldin C, Dijkstra D, Wikstrom H, Wise LD, Pugsley TA, Sokoloff P, Pauli S, Farde L, Sedvall G (1996) Autoradiographic localisation of D3-dopamine receptors in the human brain using the selective D3-dopamine receptor agonist (+)-[3H]PD 128907. Psychopharmacology 128(3):240–247

    Article  CAS  PubMed  Google Scholar 

  6. Barth V, Need AB, Tzavara ET, Giros B, Overshiner C, Gleason SD, Wade M, Johansson AM, Perry K, Nomikos GG, Witkin JM (2013) In vivo occupancy of dopamine D3 receptors by antagonists produces neurochemical and behavioral effects of potential relevance to attention-deficit-hyperactivity disorder. J Pharmacol Exp Ther 344(2):501–510. doi:10.1124/jpet.112.198895

    Article  CAS  PubMed  Google Scholar 

  7. Le Foll B, Di Ciano P (2014) Neuronal circuitry underlying the impact of D3 receptor ligands in drug addiction. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2014.08.017

    PubMed  Google Scholar 

  8. Keck TM, John WS, Czoty PW, Nader MA, Newman AH (2015) Identifying medication targets for psychostimulant addiction: unraveling the dopamine D3 receptor hypothesis. J Med Chem 58(14):5361–5380. doi:10.1021/jm501512b

    Article  CAS  PubMed  Google Scholar 

  9. Newman-Tancredi A, Cussac D, Audinot V, Pasteau V, Gavaudan S, Millan MJ (1999) G protein activation by human dopamine D3 receptors in high-expressing Chinese hamster ovary cells: a guanosine-5′-O-(3-[35S]thio)-triphosphate binding and antibody study. Mol Pharmacol 55(3):564–574

    CAS  PubMed  Google Scholar 

  10. Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 24(3):165–205

    Article  CAS  PubMed  Google Scholar 

  11. Selley DE, Sim LJ, Xiao R, Liu Q, Childers SR (1997) mu-Opioid receptor-stimulated guanosine-5′-O-(gamma-thio)-triphosphate binding in rat thalamus and cultured cell lines: signal transduction mechanisms underlying agonist efficacy. Mol Pharmacol 51(1):87–96

    CAS  PubMed  Google Scholar 

  12. Selley DE, Liu Q, Childers SR (1998) Signal transduction correlates of mu opioid agonist intrinsic efficacy: receptor-stimulated [35S]GTP gamma S binding in mMOR-CHO cells and rat thalamus. J Pharmacol Exp Ther 285(2):496–505

    CAS  PubMed  Google Scholar 

  13. Sally EJ, Xu H, Dersch CM, Hsin LW, Chang LT, Prisinzano TE, Simpson DS, Giuvelis D, Rice KC, Jacobson AE, Cheng K, Bilsky EJ, Rothman RB (2010) Identification of a novel “almost neutral” micro-opioid receptor antagonist in CHO cells expressing the cloned human mu-opioid receptor. Synapse 64(4):280–288. doi:10.1002/syn.20723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Antonio T, Childers SR, Rothman RB, Dersch CM, King C, Kuehne M, Bornmann WG, Eshleman AJ, Janowsky A, Simon ER, Reith ME, Alper K (2013) Effect of Iboga alkaloids on micro-opioid receptor-coupled G protein activation. PLoS One 8(10):e77262. doi:10.1371/journal.pone.0077262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meller E, Bohmaker K, Namba Y, Friedhoff AJ, Goldstein M (1987) Relationship between receptor occupancy and response at striatal dopamine autoreceptors. Mol Pharmacol 31(6):592–598

    CAS  PubMed  Google Scholar 

  16. Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302(1):381–389

    Article  CAS  PubMed  Google Scholar 

  17. Tadori Y, Forbes RA, McQuade RD, Kikuchi T (2009) Receptor reserve-dependent properties of antipsychotics at human dopamine D2 receptors. Eur J Pharmacol 607(1–3):35–40. doi:10.1016/j.ejphar.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh B, Antonio T, Zhen J, Kharkar P, Reith ME, Dutta AK (2010) Development of (S)-N6-(2-(4-(isoquinolin-1-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydro benzo[d]-thiazole-2,6-diamine and its analogue as a D3 receptor preferring agonist: potent in vivo activity in Parkinson’s disease animal models. J Med Chem 53(3):1023–1037. doi:10.1021/jm901184n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biswas S, Hazeldine S, Ghosh B, Parrington I, Kuzhikandathil E, Reith ME, Dutta AK (2008) Bioisosteric heterocyclic versions of 7-{[2-(4-phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: identification of highly potent and selective agonists for dopamine D3 receptor with potent in vivo activity. J Med Chem 51(10):3005–3019. doi:10.1021/jm701524h

    Article  CAS  PubMed  Google Scholar 

  20. Kortagere S, Cheng SY, Antonio T, Zhen J, Reith ME, Dutta AK (2011) Interaction of novel hybrid compounds with the D3 dopamine receptor: site-directed mutagenesis and homology modeling studies. Biochem Pharmacol 81(1):157–163. doi:10.1016/j.bcp.2010.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li C, Biswas S, Li X, Dutta AK, Le W (2010) Novel D3 dopamine receptor-preferring agonist D-264: evidence of neuroprotective property in Parkinson’s disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res 88(11):2513–2523. doi:10.1002/jnr.22405

    CAS  PubMed  Google Scholar 

  22. Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben-Jonathan N, Grandy DK, Low MJ (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19(1):103–113

    Article  CAS  PubMed  Google Scholar 

  23. Ehlert FJ (1985) The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol Pharmacol 28(5):410–421

    CAS  PubMed  Google Scholar 

  24. Lane EL, Handley OJ, Rosser AE, Dunnett SB (2008) Potential cellular and regenerative approaches for the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4(5):835–845

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hildebrandt JD (1997) Role of subunit diversity in signaling by heterotrimeric G proteins. Biochem Pharmacol 54(3):325–339

    Article  CAS  PubMed  Google Scholar 

  26. Gogoi S, Antonio T, Rajagopalan S, Reith M, Andersen J, Dutta AK (2011) Dopamine D(2)/D(3) agonists with potent iron chelation, antioxidant and neuroprotective properties: potential implication in symptomatic and neuroprotective treatment of Parkinson’s disease. ChemMedChem 6(6):991–995. doi:10.1002/cmdc.201100140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson M, Antonio T, Reith ME, Dutta AK (2012) Structure-activity relationship study of N(6)-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydroben zo[d]thiazole-2,6-diamine analogues: development of highly selective D3 dopamine receptor agonists along with a highly potent D2/D3 agonist and their pharmacological characterization. J Med Chem 55(12):5826–5840. doi:10.1021/jm300268s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sim-Selley LJ, Cassidy MP, Sparta A, Zachariou V, Nestler EJ, Selley DE (2011) Effect of DeltaFosB overexpression on opioid and cannabinoid receptor-mediated signaling in the nucleus accumbens. Neuropharmacology 61(8):1470–1476. doi:10.1016/j.neuropharm.2011.08.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Munson PJ, Rodbard D (1988) An exact correction to the “Cheng–Prusoff” correction. J Recept Res 8(1–4):533–546

    Article  CAS  PubMed  Google Scholar 

  30. Zhen J, Antonio T, Dutta AK, Reith ME (2010) Concentration of receptor and ligand revisited in a modified receptor binding protocol for high-affinity radioligands: [3H]Spiperone binding to D2 and D3 dopamine receptors. J Neurosci Methods 188(1):32–38. doi:10.1016/j.jneumeth.2010.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  32. Silverman MP, Strange WLTC (2004) The distribution of composite measurements: how to be certain of the uncertainties in what we measure. Am J Phys 72(8):13

    Article  Google Scholar 

  33. Raymond JR, Olsen CL, Gettys TW (1993) Cell-specific physical and functional coupling of human 5-HT1A receptors to inhibitory G protein alpha-subunits and lack of coupling to Gs alpha. Biochemistry 32(41):11064–11073

    Article  CAS  PubMed  Google Scholar 

  34. Zaworski PG, Alberts GL, Pregenzer JF, Im WB, Slightom JL, Gill GS (1999) Efficient functional coupling of the human D3 dopamine receptor to G(o) subtype of G proteins in SH-SY5Y cells. Br J Pharmacol 128(6):1181–1188. doi:10.1038/sj.bjp.0702905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gainetdinov RR, Bohn LM, Sotnikova TD, Cyr M, Laakso A, Macrae AD, Torres GE, Kim KM, Lefkowitz RJ, Caron MG, Premont RT (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38(2):291–303

    Article  CAS  PubMed  Google Scholar 

  36. Kim KM, Gainetdinov RR, Laporte SA, Caron MG, Barak LS (2005) G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex. A case of autoreceptor regulation. J Biol Chem 280(13):12774–12780. doi:10.1074/jbc.M408901200

    Article  CAS  PubMed  Google Scholar 

  37. Barak LS, Gilchrist J, Becker JM, Kim KM (2006) Relationship between the G protein signaling and homologous desensitization of G protein-coupled receptors. Biochem Biophys Res Commun 339(2):695–700. doi:10.1016/j.bbrc.2005.11.070

    Article  CAS  PubMed  Google Scholar 

  38. Defagot MC, Malchiodi EL, Villar MJ, Antonelli MC (1997) Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Brain Res Mol Brain Res 45(1):1–12

    Article  CAS  PubMed  Google Scholar 

  39. Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ (1998) Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: comparison of D1-, D2-, and D4-like receptors. Neuroscience 83(1):169–176

    Article  CAS  PubMed  Google Scholar 

  40. Patel S, Freedman S, Chapman KL, Emms F, Fletcher AE, Knowles M, Marwood R, McAllister G, Myers J, Curtis N, Kulagowski JJ, Leeson PD, Ridgill M, Graham M, Matheson S, Rathbone D, Watt AP, Bristow LJ, Rupniak NM, Baskin E, Lynch JJ, Ragan CI (1997) Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J Pharmacol Exp Ther 283(2):636–647

    CAS  PubMed  Google Scholar 

  41. Selley DE, Cao CC, Liu Q, Childers SR (2000) Effects of sodium on agonist efficacy for G-protein activation in mu-opioid receptor-transfected CHO cells and rat thalamus. Br J Pharmacol 130(5):987–996. doi:10.1038/sj.bjp.0703382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Skinbjerg M, Seneca N, Liow JS, Hong J, Weinshenker D, Pike VW, Halldin C, Sibley DR, Innis RB (2010) Dopamine beta-hydroxylase-deficient mice have normal densities of D(2) dopamine receptors in the high-affinity state based on in vivo PET imaging and in vitro radioligand binding. Synapse 64(9):699–703. doi:10.1002/syn.20781

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Piercey MF, Walker EL, Feldpausch DL, Camacho-Ochoa M (1996) High affinity binding for pramipexole, a dopamine D3 receptor ligand, in rat striatum. Neurosci Lett 219(2):138–140

    Article  CAS  PubMed  Google Scholar 

  44. Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T (2006) Psychosis pathways converge via D2high dopamine receptors. Synapse 60(4):319–346. doi:10.1002/syn.20303

    Article  CAS  PubMed  Google Scholar 

  45. Nickolls SA, Strange PG (2003) Interaction of the D2short dopamine receptor with G proteins: analysis of receptor/G protein selectivity. Biochem Pharmacol 65(7):1139–1150

    Article  CAS  PubMed  Google Scholar 

  46. Gettys TW, Sheriff-Carter K, Moomaw J, Taylor IL, Raymond JR (1994) Characterization and use of crude alpha-subunit preparations for quantitative immunoblotting of G proteins. Anal Biochem 220(1):82–91

    Article  CAS  PubMed  Google Scholar 

  47. Lane JR, Powney B, Wise A, Rees S, Milligan G (2007) Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1, Gi2, and Gi3. Mol Pharmacol 71(5):1349–1359. doi:10.1124/mol.106.032722

    Article  CAS  PubMed  Google Scholar 

  48. Moller D, Kling RC, Skultety M, Leuner K, Hubner H, Gmeiner P (2014) Functionally selective dopamine D(2), D(3) receptor partial agonists. J Med Chem 57(11):4861–4875. doi:10.1021/jm5004039

    Article  PubMed  Google Scholar 

  49. Boddeke HW, Fargin A, Raymond JR, Schoeffter P, Hoyer D (1992) Agonist/antagonist interactions with cloned human 5-HT1A receptors: variations in intrinsic activity studied in transfected HeLa cells. Naunyn-Schmiedeberg’s Arch Pharmacol 345(3):257–263

    Article  CAS  Google Scholar 

  50. MacEwan DJ, Kim GD, Milligan G (1995) Analysis of the role of receptor number in defining the intrinsic activity and potency of partial agonists in neuroblastoma x glioma hybrid NG108-15 cells transfected to express differing levels of the human beta 2-adrenoceptor. Mol Pharmacol 48(2):316–325

    CAS  PubMed  Google Scholar 

  51. Varrault A, Journot L, Audigier Y, Bockaert J (1992) Transfection of human 5-hydroxytryptamine1A receptors in NIH-3T3 fibroblasts: effects of increasing receptor density on the coupling of 5-hydroxytryptamine1A receptors to adenylyl cyclase. Mol Pharmacol 41(6):999–1007

    CAS  PubMed  Google Scholar 

  52. Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR, McAllister G (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268(1):417–426

    CAS  PubMed  Google Scholar 

  53. Vanhauwe JF, Fraeyman N, Francken BJ, Luyten WH, Leysen JE (1999) Comparison of the ligand binding and signaling properties of human dopamine D(2) and D(3) receptors in Chinese hamster ovary cells. J Pharmacol Exp Ther 290(2):908–916

    CAS  PubMed  Google Scholar 

  54. Vanhauwe JF, Josson K, Luyten WH, Driessen AJ, Leysen JE (2000) G-protein sensitivity of ligand binding to human dopamine D(2) and D(3) receptors expressed in Escherichia coli: clues for a constrained D(3) receptor structure. J Pharmacol Exp Ther 295(1):274–283

    CAS  PubMed  Google Scholar 

  55. Platania CB, Salomone S, Leggio GM, Drago F, Bucolo C (2012) Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One 7(9):e44316. doi:10.1371/journal.pone.0044316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Obadiah J, Avidor-Reiss T, Fishburn CS, Carmon S, Bayewitch M, Vogel Z, Fuchs S, Levavi-Sivan B (1999) Adenylyl cyclase interaction with the D2 dopamine receptor family; differential coupling to Gi, Gz, and Gs. Cell Mol Neurobiol 19(5):653–664

    Article  CAS  PubMed  Google Scholar 

  57. Ilani T, Fishburn CS, Levavi-Sivan B, Carmon S, Raveh L, Fuchs S (2002) Coupling of dopamine receptors to G proteins: studies with chimeric D2/D3 dopamine receptors. Cell Mol Neurobiol 22(1):47–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Institute of Neurological Disorders and Stroke/National Institute of Health (NS047198, AKD) and National Institute of Health (R01-NS070715, DES).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhen or Maarten E. A. Reith.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Maarten E. A. Reith, Aloke K. Dutta and Dana E. Selley have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, J., Antonio, T., Jacob, J.C. et al. Efficacy of Hybrid Tetrahydrobenzo[d]thiazole Based Aryl Piperazines D-264 and D-301 at D2 and D3 Receptors. Neurochem Res 41, 328–339 (2016). https://doi.org/10.1007/s11064-015-1808-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1808-6

Keywords

Navigation