Skip to main content
Log in

Protocatechuic Acid Inhibits Inflammatory Responses in LPS-Stimulated BV2 Microglia via NF-κB and MAPKs Signaling Pathways

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Protocatechuic acid (PA), a major metabolite of anthocyanins, has been reported to possess antioxidant and anti-inflammatory activities. However, the effects of PA on LPS-induced inflammatory responses in microglia have not been reported. The aim of this study was to investigate the anti-inflammatory effects and molecular mechanisms of PA on LPS-stimulated BV2 microglia. The production of inflammatory mediators TNF-α, IL-6, IL-1β, and PGE2 were detected by ELISA. TLR4, NF-κB and MAPKs activation were detected by western blotting. Our results demonstrated that PA dose-dependently inhibited LPS-induced TNF-α, IL-6, IL-1β, and PGE2 production. In addition, PA suppressed LPS-induced TLR4 expression, NF-κB and MAPKs activation, which resulted in the inhibition of inflammatory mediators. In conclusion, these results suggested that PA exhibited anti-inflammatory effects on LPS-stimulated BV2 microglia and the mechanisms were involved in the inhibition of TLR4-mediated NF-κB and MAPKs signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Griffiths M, Neal JW, Gasque P (2007) Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82:29–55

    Article  CAS  PubMed  Google Scholar 

  2. Zhou X, He X, Ren Y (2014) Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res 9:1787–1795

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pan XD, Chen XC, Zhu YG, Zhang J, Huang TW, Chen LM, Ye QY, Huang HP (2008) Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 76:362–372

    Article  CAS  PubMed  Google Scholar 

  4. Ock J, Kim S, Yi KY, Kim NJ, Han HS, Cho JY, Suk K (2010) A novel anti-neuroinflammatory pyridylimidazole compound KR-31360. Biochem Pharmacol 79:596–609

    Article  CAS  PubMed  Google Scholar 

  5. Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, Borea PA (2013) Morphine mediates a proinflammatory phenotype via mu-opioid receptor-PKCvarepsilon-Akt-ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 86:487–496

    Article  CAS  PubMed  Google Scholar 

  6. Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, Kong IK, Chang KT, Lee DS (2014) Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neurosci Lett 584C:191–196

    Google Scholar 

  7. Velagapudi R, Aderogba M, Olajide OA (2014) Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-kappaB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta 1840:3311–3319

    Article  CAS  PubMed  Google Scholar 

  8. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291

    Article  CAS  PubMed  Google Scholar 

  9. Walker DG, Whetzel AM, Lue LF (2014) Expression of suppressor of cytokine signaling genes in human elderly and Alzheimer’s disease brains and human microglia. Neuroscience pii: S0306-4522(14)00803-3. doi:10.1016/j.neuroscience.2014.09.052

  10. Tsao SM, Hsia TC, Yin MC (2014) Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF-kappaB pathways. Nutr Cancer 66:1331–1341

    Article  CAS  PubMed  Google Scholar 

  11. Vari R, D’Archivio M, Filesi C, Carotenuto S, Scazzocchio B, Santangelo C, Giovannini C, Masella R (2011) Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J Nutr Biochem 22:409–417

    Article  CAS  PubMed  Google Scholar 

  12. Min SW, Ryu SN, Kim DH (2010) Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol 10:959–966

    Article  CAS  PubMed  Google Scholar 

  13. Del Corno M, Varano B, Scazzocchio B, Filesi C, Masella R, Gessani S (2014) Protocatechuic acid inhibits human dendritic cell functional activation: role of PPARgamma up-modulation. Immunobiology 219:416–424

    Article  PubMed  Google Scholar 

  14. Wei M, Chu X, Jiang L, Yang X, Cai Q, Zheng C, Ci X, Guan M, Liu J, Deng X (2012) Protocatechuic acid attenuates lipolysaccharide-induced acute lung injury. Inflammation 35:1169–1178

    Article  CAS  PubMed  Google Scholar 

  15. Yan JJ, Jung JS, Hong YJ, Moon YS, Suh HW, Kim YH, Yun-Choi HS, Song DK (2004) Protective effect of protocatechuic acid isopropyl ester against murine models of sepsis: inhibition of TNF-alpha and nitric oxide production and augmentation of IL-10. Biol Pharm Bull 27:2024–2027

    Article  CAS  PubMed  Google Scholar 

  16. Lin WL, Hsieh YJ, Chou FP, Wang CJ, Cheng MT, Tseng TH (2003) Hibiscus protocatechuic acid inhibits lipopolysaccharide-induced rat hepatic damage. Arch Toxicol 77:42–47

    Article  CAS  PubMed  Google Scholar 

  17. Thummuri D, Jeengar MK, Shrivastava S, Nemani H, Ramavat RN, Chaudhari P, Naidu VG (2015) Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res 99:63–73

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Zhou PH, Xu CG, Zhou XJ, Hu W, Zhang J (2015) Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-kappaB and MAPK signal pathways. J Mol Histol 46:283–290

    Article  PubMed  Google Scholar 

  19. Nakagawa Y, Chiba K (2014) Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals 7:1028–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dai XJ, Li N, Yu L, Chen ZY, Hua R, Qin X, Zhang YM (2014) Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4-dependent pathway. Cell Stress Chaperones 20:321–331

    Article  Google Scholar 

  21. Cheng W, Li Y, Hou X, Bai B, Li F, Ding F, Ma J, Zhang N, Shen Y, Wang Y (2015) Determining the neuroprotective effects of dextromethorphan in lipopolysaccharidestimulated BV2 microglia. Mol Med Rep 11:1132–1138

    CAS  PubMed  Google Scholar 

  22. Ishihara Y, Itoh K, Ishida A, Yamazaki T (2014) Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J Steroid Biochem Mol Biol 145C:85–93

    Google Scholar 

  23. Dec E, Rana P, Katheria V, Dec R, Khare M, Nalbandian A, Leu SY, Radom-Aizik S, Llewellyn K, BenMohamed L, Zaldivar F, Kimonis V (2014) Cytokine profiling in patients with VCP-associated disease. Clin Transl Sci 7:29–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang J, Guo J, Zhao X, Chen Z, Wang G, Liu A, Wang Q, Zhou W, Xu Y, Wang C (2013) Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res 250:230–237

    Article  CAS  PubMed  Google Scholar 

  25. Pangestuti R, Vo TS, Ngo DH, Kim SK (2013) Fucoxanthin ameliorates inflammation and oxidative reponses in microglia. J Agric Food Chem 61:3876–3883

    Article  CAS  PubMed  Google Scholar 

  26. Cai L, Wang Z, Meyer JM, Ji A, van der Westhuyzen DR (2012) Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. J Lipid Res 53:1472–1481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB, Parks JS (2010) Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res 51:3196–3206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM, Hise M, Zaloga GP, Siddiqui RA (2010) Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res 51:3470–3480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fu Y, Wei Z, Zhou E, Zhang N, Yang Z (2014) Cyanidin-3-O-beta-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model. J Lipid Res 55:1111–1119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zhao ZZ, Tang XF, Zhao XH, Zhang MH, Zhang WJ, Hou SH, Yuan WF, Zhang HF, Shi LJ, Jia H, Liang L, Lai Z, Gao JF, Zhang KY, Fu L, Chen W (2014) Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-kappa B activation. Biochem Pharmacol 90:73–87

    Article  CAS  PubMed  Google Scholar 

  31. Chuang YF, Yang HY, Ko TL, Hsu YF, Sheu JR, Ou G, Hsu MJ (2014) Valproic acid suppresses lipopolysaccharide-induced cyclooxygenase-2 expression via MKP-1 in murine brain microvascular endothelial cells. Biochem Pharmacol 88:372–383

    Article  CAS  PubMed  Google Scholar 

  32. German OL, Monaco S, Agnolazza DL, Rotstein NP, Politi LE (2013) Retinoid X receptor activation is essential for docosahexaenoic acid protection of retina photoreceptors. J Lipid Res 54:2236–2246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ouyang ZX, Zhai ZJ, Li HW, Liu XQ, Qu XH, Li XN, Fan QM, Tang TT, Qin A, Dai KR (2014) Hypericin suppresses osteoclast formation and wear particle-induced osteolysis via modulating ERK signalling pathway. Biochem Pharmacol 90:276–287

    Article  CAS  PubMed  Google Scholar 

  34. Tang YB, Jacobi A, Vater C, Zou XN, Stiehler M (2014) Salvianolic acid B protects human endothelial progenitor cells against oxidative stress-mediated dysfunction by modulating Akt/mTOR/4EBP1, p38 MAPK/ATF2, and ERK1/2 signaling pathways. Biochem Pharmacol 90:34–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Key disciplines Fund of the Ministry of Health of the People’s Republic of China, the Foundation of Tianjin Science and Technology Committee (12ZCDZSY17700, 14JCZDJC35600), National Key Technology Support Program 2014BAI04B02.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hy., Wang, H., Wang, Jh. et al. Protocatechuic Acid Inhibits Inflammatory Responses in LPS-Stimulated BV2 Microglia via NF-κB and MAPKs Signaling Pathways. Neurochem Res 40, 1655–1660 (2015). https://doi.org/10.1007/s11064-015-1646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1646-6

Keywords

Navigation