Skip to main content

Advertisement

Log in

The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target?

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy is one of the most common clinical neurological disorders. One of the major pathological findings in temporal lobe epilepsy is hippocampal sclerosis, characterized by massive neuronal loss and severe gliosis. The epileptogenesis process of temporal lobe epilepsy usually starts with initial precipitating insults, followed by neurodegeneration, abnormal hippocampus circuitry reorganization, and the formation of hypersynchronicity. Experimental and clinical evidence strongly suggests that dysfunctional neurogenesis is involved in the epileptogenesis. Recent data demonstrate that neurogenesis is induced by acute seizures or precipitating insults, whereas the capacity of neuronal recruitment and proliferation substantially decreases in the chronic phase of epilepsy. Participation of the Wnt/β-catenin signaling pathway in neurogenesis reveals its importance in epileptogenesis; its dysfunction contributes to the structural and functional abnormality of temporal lobe epilepsy, while rescuing this pathway exerts neuroprotective effects. Here, we summarize data supporting the involvement of Wnt/β-catenin signaling in the epileptogenesis of temporal lobe epilepsy. We also propose that the Wnt/β-catenin signaling pathway may serve as a promising therapeutic target for temporal lobe epilepsy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AEDs:

Anti-epileptic drugs

APC:

Adematous polyposis coli

Ara-C:

Cytosine-β-d-arabinofuranoside

Axin:

Axis inhibition protein

BDNF:

Brain-derived neurotrophic factor

Cer:

Cerberus

CNS:

Central nervous system

COX2:

Cyclooxygenase 2

DCX:

Doublecortin

DG:

Dentate gyrus

Dkk:

Dickkopf

Dvl:

Disheveld

E2:

Estrogen

ECS:

Electroconvulsive seizures

FGF-2:

Fibroblast growth factor-2

Fz:

Frizzled

GABA:

γ-Aminobutyric acid

GSK-3β:

Glycogen synthase kinase-3β

HDAC:

Histone deacetylase

HS:

Hippocampal sclerosis

KA:

Kainic acid

LiCl:

Lithium chloride

LRP5/6:

Low-density lipoprotein receptor-related protein 5 or 6

MAP1B:

Microtubule-associated protein 1B

NCAM:

Neural cell adhesion molecule

NGF:

Nerve grow factor

NPCs:

Neural progenitor cells

NPY:

Neuropeptide Y

NSCs:

Neural stem cells

PSA:

Polysialic acid

SE:

Status epilepticus

sFRP:

Secreted frizzled-related protein

Shh:

Sonic hedgehog

SVZ:

Subventricular zone

SZG:

Subgranular zone

TLE:

Temporal lobe epilepsy

VEGF:

Vascular endothelial growth factor

VPA:

Valproic acid

WIF1:

Wnt inhibitory factor 1

References

  1. Sander JW, Shorvon SD (1996) Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatry 61(5):433–443

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26(3):321–330. doi:10.1002/ana.410260303

    CAS  PubMed  Google Scholar 

  3. Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535(2):195–204

    CAS  PubMed  Google Scholar 

  4. Harvey AS, Berkovic SF, Wrennall JA, Hopkins IJ (1997) Temporal lobe epilepsy in childhood: clinical, EEG, and neuroimaging findings and syndrome classification in a cohort with new-onset seizures. Neurology 49(4):960–968

    CAS  PubMed  Google Scholar 

  5. Serrano-Castro P, Sanchez-Alvarez JC, Garcia-Gomez T (1997) Mesial temporal sclerosis (I): histological data, physiopathological hypothesis and etiological factors. Rev Neurol 25(140):584–589

    CAS  PubMed  Google Scholar 

  6. Blumcke I (2009) Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 15(1):34–39. doi:10.1016/j.yebeh.2009.02.033

    PubMed  Google Scholar 

  7. Shinnar S, Berg AT (1996) Does antiepileptic drug therapy prevent the development of “chronic” epilepsy? Epilepsia 37(8):701–708

    CAS  PubMed  Google Scholar 

  8. Loscher W, Schmidt D (2002) New horizons in the development of antiepileptic drugs. Epilepsy Res 50(1–2):3–16

    CAS  PubMed  Google Scholar 

  9. Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135(3509):1127–1128

    CAS  PubMed  Google Scholar 

  10. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317. doi:10.1038/3305

    CAS  PubMed  Google Scholar 

  11. Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. doi:10.1038/nature04108

    CAS  PubMed  Google Scholar 

  12. Wisniewska MB (2013) Physiological role of beta-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 38(6):1144–1155. doi:10.1007/s11064-013-0980-9

    CAS  PubMed  PubMed Central  Google Scholar 

  13. De Ferrari GV, Papassotiropoulos A, Biechele T et al (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci USA 104(22):9434–9439. doi:10.1073/pnas.0603523104

    PubMed  PubMed Central  Google Scholar 

  14. Lovestone S, Guntert A, Hye A, Lynham S, Thambisetty M, Ward M (2007) Proteomics of Alzheimer’s disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics 4(2):227–238. doi:10.1586/14789450.4.2.227

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Yuan X, Wang Z, Li R (2014) The canonical Wnt signaling pathway in autism. CNS Neurol Disord Drug Targets 13(5):765–770

    CAS  PubMed  Google Scholar 

  16. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. doi:10.1146/annurev.neuro.28.051804.101459

    CAS  PubMed  Google Scholar 

  17. Markakis EA, Gage FH (1999) Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406(4):449–460

    CAS  PubMed  Google Scholar 

  18. Toni N, Teng EM, Bushong EA et al (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 10(6):727–734. doi:10.1038/nn1908

    CAS  PubMed  Google Scholar 

  19. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214. doi:10.1242/dev.033910

    PubMed  Google Scholar 

  20. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75

    PubMed  PubMed Central  Google Scholar 

  22. Cappuccio I, Calderone A, Busceti CL et al (2005) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J Neurosci 25(10):2647–2657. doi:10.1523/jneurosci.5230-04.2005

    CAS  PubMed  Google Scholar 

  23. Busceti CL, Biagioni F, Aronica E et al (2007) Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia 48(4):694–705. doi:10.1111/j.1528-1167.2007.01055.x

    CAS  PubMed  Google Scholar 

  24. Dun Y, Li G, Yang Y, Xiong Z, Feng M, Wang M, Zhang Y, Xiang J, Ma R (2012) Inhibition of the canonical Wnt pathway by Dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats. Neurosci Lett 525(2):83–88. doi:10.1016/j.neulet.2012.07.030

    CAS  PubMed  Google Scholar 

  25. Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11(12):951–961

    CAS  PubMed  Google Scholar 

  26. Barrow J (2011) Wnt/planar cell polarity signaling: an important mechanism to coordinate growth and patterning in the limb. Organogenesis 7(4):260–266. doi:10.4161/org.7.4.19049

    PubMed  PubMed Central  Google Scholar 

  27. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin 43(10):745–756. doi:10.1093/abbs/gmr079 Shanghai

    CAS  PubMed  Google Scholar 

  28. Garbe DS, Ring RH (2012) Investigating tonic Wnt signaling throughout the adult CNS and in the hippocampal neurogenic niche of BatGal and ins-TopGal mice. Cell Mol Neurobiol 32(7):1159–1174. doi:10.1007/s10571-012-9841-3

    CAS  PubMed  Google Scholar 

  29. Fortress AM, Frick KM (2015) Hippocampal Wnt signaling: memory regulation and hormone interactions. Neuroscientist. doi:10.1177/1073858415574728

    PubMed  Google Scholar 

  30. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. doi:10.1016/j.cell.2006.10.018

    CAS  PubMed  Google Scholar 

  31. Gao X, Arlotta P, Macklis JD, Chen J (2007) Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27(52):14317–14325. doi:10.1523/jneurosci.3206-07.2007

    CAS  PubMed  Google Scholar 

  32. Archbold HC, Yang YX, Chen L, Cadigan KM (2012) How do they do Wnt they do?: regulation of transcription by the Wnt/beta-catenin pathway. Acta Physiol 204(1):74–109. doi:10.1111/j.1748-1716.2011.02293.x Oxf

    CAS  Google Scholar 

  33. Karalay O, Doberauer K, Vadodaria KC et al (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 108(14):5807–5812. doi:10.1073/pnas.1013456108

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lavado A, Lagutin OV, Chow LM, Baker SJ, Oliver G (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol. doi:10.1371/journal.pbio.1000460

    PubMed  PubMed Central  Google Scholar 

  35. Gao Z, Ure K, Ables JL, Lagace DC, Nave KA, Goebbels S, Eisch AJ, Hsieh J (2009) Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 12(9):1090–1092. doi:10.1038/nn.2385

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452. doi:10.1038/nature05091

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous DN, Piazza PV (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS One 3(4):e1959. doi:10.1371/journal.pone.0001959

    PubMed  PubMed Central  Google Scholar 

  38. Zhao CS, Overstreet-Wadiche L (2008) Integration of adult generated neurons during epileptogenesis. Epilepsia 49(Suppl 5):3–12. doi:10.1111/j.1528-1167.2008.01632.x

    PubMed  Google Scholar 

  39. Gomez-Nicola D, Suzzi S, Vargas-Caballero M et al (2014) Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration. Brain 137(Pt 8):2312–2328. doi:10.1093/brain/awu155

    PubMed  PubMed Central  Google Scholar 

  40. Siebzehnrubl FA, Blumcke I (2008) Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 49(Suppl 5):55–65. doi:10.1111/j.1528-1167.2008.01638.x

    PubMed  Google Scholar 

  41. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17(10):3727–3738

    CAS  PubMed  Google Scholar 

  42. Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94(19):10432–10437

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17(3):473–490. doi:10.1016/j.nbd.2004.08.008

    CAS  PubMed  Google Scholar 

  44. Nakagawa E, Aimi Y, Yasuhara O, Tooyama I, Shimada M, McGeer PL, Kimura H (2000) Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia 41(1):10–18

    CAS  PubMed  Google Scholar 

  45. Sankar R, Shin D, Mazarati AM, Liu H, Katsumori H, Lezama R, Wasterlain CG (2000) Epileptogenesis after status epilepticus reflects age- and model-dependent plasticity. Ann Neurol 48(4):580–589

    CAS  PubMed  Google Scholar 

  46. Kralic JE, Ledergerber DA, Fritschy JM (2005) Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci 22(8):1916–1927. doi:10.1111/j.1460-9568.2005.04386.x

    PubMed  Google Scholar 

  47. Jessberger S, Romer B, Babu H, Kempermann G (2005) Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196(2):342–351. doi:10.1016/j.expneurol.2005.08.010

    CAS  PubMed  Google Scholar 

  48. Shapiro LA, Korn MJ, Ribak CE (2005) Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience 136(3):823–831. doi:10.1016/j.neuroscience.2005.03.059

    CAS  PubMed  Google Scholar 

  49. Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11(3):311–321. doi:10.1002/hipo.1045

    CAS  PubMed  Google Scholar 

  50. Walter C, Murphy BL, Pun RY, Spieles-Engemann AL, Danzer SC (2007) Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci 27(28):7541–7552. doi:10.1523/jneurosci.0431-07.2007

    CAS  PubMed  Google Scholar 

  51. Scharfman HE, Goodman JH, Sollas AL (2000) Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 20(16):6144–6158

    CAS  PubMed  Google Scholar 

  52. Jessberger S, Zhao C, Toni N, Clemenson GD Jr, Li Y, Gage FH (2007) Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci 27(35):9400–9407. doi:10.1523/jneurosci.2002-07.2007

    CAS  PubMed  Google Scholar 

  53. Scharfman HE, Sollas AL, Goodman JH (2002) Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience 111(1):71–81

    CAS  PubMed  Google Scholar 

  54. McCloskey DP, Hintz TM, Pierce JP, Scharfman HE (2006) Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur J Neurosci 24(8):2203–2210. doi:10.1111/j.1460-9568.2006.05101.x

    PubMed  PubMed Central  Google Scholar 

  55. Jung KH, Chu K, Kim M, Jeong SW, Song YM, Lee ST, Kim JY, Lee SK, Roh JK (2004) Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci 19(12):3219–3226. doi:10.1111/j.0953-816X.2004.03412.x

    PubMed  Google Scholar 

  56. Pekcec A, Muhlenhoff M, Gerardy-Schahn R, Potschka H (2007) Impact of the PSA-NCAM system on pathophysiology in a chronic rodent model of temporal lobe epilepsy. Neurobiol Dis 27(1):54–66. doi:10.1016/j.nbd.2007.04.002

    CAS  PubMed  Google Scholar 

  57. Pekcec A, Fuest C, Muhlenhoff M, Gerardy-Schahn R, Potschka H (2008) Targeting epileptogenesis-associated induction of neurogenesis by enzymatic depolysialylation of NCAM counteracts spatial learning dysfunction but fails to impact epilepsy development. J Neurochem 105(2):389–400. doi:10.1111/j.1471-4159.2007.05172.x

    CAS  PubMed  Google Scholar 

  58. Heinrich C, Nitta N, Flubacher A et al (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26(17):4701–4713. doi:10.1523/jneurosci.5516-05.2006

    CAS  PubMed  Google Scholar 

  59. Mathern GW, Leiphart JL, De Vera A, Adelson PD, Seki T, Neder L, Leite JP (2002) Seizures decrease postnatal neurogenesis and granule cell development in the human fascia dentata. Epilepsia 43(Suppl 5):68–73

    PubMed  Google Scholar 

  60. Pirttila TJ, Lukasiuk K, Hakansson K, Grubb A, Abrahamson M, Pitkanen A (2005) Cystatin C modulates neurodegeneration and neurogenesis following status epilepticus in mouse. Neurobiol Dis 20(2):241–253. doi:10.1016/j.nbd.2005.03.006

    PubMed  Google Scholar 

  61. Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M (2005) Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis 19(3):436–450. doi:10.1016/j.nbd.2005.01.020

    CAS  PubMed  Google Scholar 

  62. Liu S, Wang J, Zhu D, Fu Y, Lukowiak K, Lu YM (2003) Generation of functional inhibitory neurons in the adult rat hippocampus. J Neurosci 23(3):732–736

    PubMed  Google Scholar 

  63. Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23(6):2440–2452

    CAS  PubMed  Google Scholar 

  64. Shetty AK, Turner DA (2001) Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of ca3 pyramidal neurons. Exp Neurol 169(2):276–297. doi:10.1006/exnr.2001.7668

    CAS  PubMed  Google Scholar 

  65. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73(1):1–60. doi:10.1016/j.pneurobio.2004.03.009

    CAS  PubMed  Google Scholar 

  66. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470. doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I

    CAS  PubMed  Google Scholar 

  67. Auvergne R, Lere C, El Bahh B, Arthaud S, Lespinet V, Rougier A, Salle GLG (2002) Delayed kindling epileptogenesis and increased neurogenesis in adult rats housed in an enriched environment. Brain Res 954(2):277–285

    CAS  PubMed  Google Scholar 

  68. Young D, Lawlor PA, Leone P, Dragunow M, During MJ (1999) Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 5(4):448–453. doi:10.1038/7449

    CAS  PubMed  Google Scholar 

  69. Hattiangady B, Shuai B, Cai J, Coksaygan T, Rao MS, Shetty AK (2007) Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus. Stem Cells 25(8):2104–2117. doi:10.1634/stemcells.2006-0726

    PubMed  Google Scholar 

  70. Rao MS, Hattiangady B, Rai KS, Shetty AK (2007) Strategies for promoting anti-seizure effects of hippocampal fetal cells grafted into the hippocampus of rats exhibiting chronic temporal lobe epilepsy. Neurobiol Dis 27(2):117–132. doi:10.1016/j.nbd.2007.03.016

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chu K, Kim M, Jung KH et al (2004) Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats. Brain Res 2:213–221. doi:10.1016/j.brainres.2004.07.045

    Google Scholar 

  72. Bell B, Lin JJ, Seidenberg M, Hermann B (2011) The neurobiology of cognitive disorders in temporal lobe epilepsy. Nat Rev Neurol 7(3):154–164. doi:10.1038/nrneurol.2011.3

    PubMed  Google Scholar 

  73. Hermann BP, Seidenberg M, Schoenfeld J, Davies K (1997) Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy. Arch Neurol 54(4):369–376

    CAS  PubMed  Google Scholar 

  74. Voltzenlogel V, Vignal JP, Hirsch E, Manning L (2014) The influence of seizure frequency on anterograde and remote memory in mesial temporal lobe epilepsy. Seizure. doi:10.1016/j.seizure.2014.06.013

    PubMed  Google Scholar 

  75. Alessio A, Damasceno BP, Camargo CH, Kobayashi E, Guerreiro CA, Cendes F (2004) Differences in memory performance and other clinical characteristics in patients with mesial temporal lobe epilepsy with and without hippocampal atrophy. Epilepsy Behav 5(1):22–27

    CAS  PubMed  Google Scholar 

  76. Salanova V, Markand O, Worth R (2002) Temporal lobe epilepsy surgery: outcome, complications, and late mortality rate in 215 patients. Epilepsia 43(2):170–174

    CAS  PubMed  Google Scholar 

  77. Lee JH, Hwang YS, Shin JJ, Kim TH, Shin HS, Park SK (2008) Surgical complications of epilepsy surgery procedures: experience of 179 procedures in a single institute. J Korean Neurosurg Soc 44(4):234–239. doi:10.3340/jkns.2008.44.4.234

    PubMed  PubMed Central  Google Scholar 

  78. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14(2):186–191. doi:10.1016/j.conb.2004.03.001

    CAS  PubMed  Google Scholar 

  79. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410(6826):372–376. doi:10.1038/35066584

    CAS  PubMed  Google Scholar 

  80. Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72(2):399–406

    CAS  PubMed  Google Scholar 

  81. Bartha L, Marien P, Brenneis C et al (2005) Hippocampal formation involvement in a language-activation task in patients with mesial temporal lobe epilepsy. Epilepsia 46(11):1754–1763. doi:10.1111/j.1528-1167.2005.00292.x

    PubMed  Google Scholar 

  82. Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18(10):2707–2712

    PubMed  Google Scholar 

  83. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Curr Biol 12(7):606–608

    CAS  PubMed  Google Scholar 

  84. Cave CB, Squire LR (1991) Equivalent impairment of spatial and nonspatial memory following damage to the human hippocampus. Hippocampus 1(3):329–340. doi:10.1002/hipo.450010323

    CAS  PubMed  Google Scholar 

  85. Bartesaghi R (2004) Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig. Hippocampus 14(4):482–498. doi:10.1002/hipo.10201

    PubMed  Google Scholar 

  86. Rausch R, Babb TL (1993) Hippocampal neuron loss and memory scores before and after temporal lobe surgery for epilepsy. Arch Neurol 50(8):812–817

    CAS  PubMed  Google Scholar 

  87. Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 100(24):14385–14390. doi:10.1073/pnas.2334169100

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rutten A, van Albada M, Silveira DC, Cha BH, Liu X, Hu YN, Cilio MR, Holmes GL (2002) Memory impairment following status epilepticus in immature rats: time-course and environmental effects. Eur J Neurosci 16(3):501–513

    PubMed  Google Scholar 

  89. Koh S, Magid R, Chung H, Stine CD, Wilson DN (2007) Depressive behavior and selective down-regulation of serotonin receptor expression after early-life seizures: reversal by environmental enrichment. Epilepsy Behav 10(1):26–31. doi:10.1016/j.yebeh.2006.11.008

    PubMed  PubMed Central  Google Scholar 

  90. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42(4):535–552

    CAS  PubMed  Google Scholar 

  91. Shetty AK, Zaman V, Shetty GA (2003) Hippocampal neurotrophin levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J Neurochem 87(1):147–159

    CAS  PubMed  Google Scholar 

  92. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100(23):13632–13637. doi:10.1073/pnas.2234031100

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765. doi:10.1126/science.1088417

    CAS  PubMed  Google Scholar 

  94. Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ (2013) Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/beta-catenin signaling pathway. J Neurosci Res 91(1):30–41. doi:10.1002/jnr.23138

    CAS  PubMed  Google Scholar 

  95. Fasen K, Beck H, Elger CE, Lie AA (2002) Differential regulation of cadherins and catenins during axonal reorganization in the adult rat CNS. J Neuropathol Exp Neurol 61(10):903–913

    CAS  PubMed  Google Scholar 

  96. Madsen TM, Newton SS, Eaton ME, Russell DS, Duman RS (2003) Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role in adult neurogenesis. Biol Psychiatry 54(10):1006–1014

    CAS  PubMed  Google Scholar 

  97. Theilhaber J, Rakhade SN, Sudhalter J, Kothari N, Klein P, Pollard J, Jensen FE (2013) Gene expression profiling of a hypoxic seizure model of epilepsy suggests a role for mTOR and Wnt signaling in epileptogenesis. PLoS One 8(9):e74428. doi:10.1371/journal.pone.0074428

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Campos VE, Du M, Li Y (2004) Increased seizure susceptibility and cortical malformation in beta-catenin mutant mice. Biochem Biophys Res Commun 320(2):606–614. doi:10.1016/j.bbrc.2004.05.204

    CAS  PubMed  Google Scholar 

  99. Mendes CT, Mury FB, de Sa Moreira E, Alberto FL, Forlenza OV, Dias-Neto E, Gattaz WF (2009) Lithium reduces Gsk3b mRNA levels: implications for Alzheimer disease. Eur Arch Psychiatry Clin Neurosci 259(1):16–22. doi:10.1007/s00406-008-0828-5

    PubMed  Google Scholar 

  100. Lange C, Mix E, Frahm J et al (2011) Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 488(1):36–40. doi:10.1016/j.neulet.2010.10.076

    CAS  PubMed  Google Scholar 

  101. Morales-Garcia JA, Luna-Medina R, Alonso-Gil S, Sanz-Sancristobal M, Palomo V, Gil C, Santos A, Martinez A, Perez-Castillo A (2012) Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci 3(11):963–971. doi:10.1021/cn300110c

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Palomo V, Perez DI, Perez C et al (2012) 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J Med Chem 55(4):1645–1661. doi:10.1021/jm201463v

    CAS  PubMed  Google Scholar 

  103. Chu T, Zhou H, Wang T, Lu L, Li F, Liu B, Kong X, Feng S (2015) In vitro characteristics of valproic acid and all-trans-retinoic acid and their combined use in promoting neuronal differentiation while suppressing astrocytic differentiation in neural stem cells. Brain Res 1596:31–47. doi:10.1016/j.brainres.2014.11.029

    CAS  PubMed  Google Scholar 

  104. Wang L, Liu Y, Li S, Long ZY, Wu YM (2015) Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells. Int J Clin Exp Pathol 8(1):578–585

    PubMed  PubMed Central  Google Scholar 

  105. Wiltse J (2005) Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of beta-catenin–developmental effects of valproic acid. Crit Rev Toxicol 35(8–9):727–738

    CAS  PubMed  Google Scholar 

  106. Wang Z, Xu L, Zhu X, Cui W, Sun Y, Nishijo H, Peng Y, Li R (2010) Demethylation of specific Wnt/beta-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat Rec 293(11):1947–1953. doi:10.1002/ar.21232 Hoboken

    CAS  Google Scholar 

  107. Bug G, Gul H, Schwarz K et al (2005) Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 65(7):2537–2541. doi:10.1158/0008-5472.can-04-3011

    CAS  PubMed  Google Scholar 

  108. Zandieh A, Maleki F, Hajimirzabeigi A, Zandieh B, Khalilzadeh O, Dehpour AR (2010) Anticonvulsant effect of celecoxib on pentylenetetrazole-induced convulsion: modulation by NO pathway. Acta Neurobiol Exp 70(4):390–397 Wars

    Google Scholar 

  109. Polascheck N, Bankstahl M, Loscher W (2010) The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 224(1):219–233. doi:10.1016/j.expneurol.2010.03.014

    CAS  PubMed  Google Scholar 

  110. Jung KH, Chu K, Lee ST et al (2006) Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 23(2):237–246. doi:10.1016/j.nbd.2006.02.016

    CAS  PubMed  Google Scholar 

  111. Caraci F, Busceti C, Biagioni F et al (2008) The Wnt antagonist, Dickkopf-1, as a target for the treatment of neurodegenerative disorders. Neurochem Res 33(12):2401–2406. doi:10.1007/s11064-008-9710-0

    CAS  PubMed  Google Scholar 

  112. Varea O, Arevalo MA, Garrido JJ, Garcia-Segura LM, Wandosell F, Mendez P (2010) Interaction of estrogen receptors with insulin-like growth factor-I and Wnt signaling in the nervous system. Steroids 75(8–9):565–569. doi:10.1016/j.steroids.2009.09.006

    CAS  PubMed  Google Scholar 

  113. Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F (2004) Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol Cell Neurosci 25(3):363–373. doi:10.1016/j.mcn.2003.10.008

    CAS  PubMed  Google Scholar 

  114. Scott EL, Brann DW (2013) Estrogen regulation of Dkk1 and Wnt/beta-Catenin signaling in neurodegenerative disease. Brain Res 1514:63–74. doi:10.1016/j.brainres.2012.12.015

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C (2005) Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience 132(3):581–589. doi:10.1016/j.neuroscience.2004.12.029

    CAS  PubMed  Google Scholar 

  116. Varea O, Garrido JJ, Dopazo A, Mendez P, Garcia-Segura LM, Wandosell F (2009) Estradiol activates beta-catenin dependent transcription in neurons. PLoS One 4(4):e5153. doi:10.1371/journal.pone.0005153

    PubMed  PubMed Central  Google Scholar 

  117. Wandosell F, Varea O, Arevalo MA, Garcia-Segura LM (2012) Oestradiol regulates beta-catenin-mediated transcription in neurones. J Neuroendocrinol 24(1):191–194. doi:10.1111/j.1365-2826.2011.02186.x

    CAS  PubMed  Google Scholar 

  118. Zhang QG, Wang R, Khan M, Mahesh V, Brann DW (2008) Role of Dickkopf-1, an antagonist of the Wnt/beta-catenin signaling pathway, in estrogen-induced neuroprotection and attenuation of tau phosphorylation. J Neurosci 28(34):8430–8441. doi:10.1523/jneurosci.2752-08.2008

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Scott EL, Zhang QG, Han D, Desai BN, Brann DW (2013) Long-term estrogen deprivation leads to elevation of Dickkopf-1 and dysregulation of Wnt/beta-Catenin signaling in hippocampal CA1 neurons. Steroids 78(6):624–632. doi:10.1016/j.steroids.2012.11.004

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Eftekhari S, Mehrabi S, Soleimani M et al (2014) BDNF modifies hippocampal KCC2 and NKCC1 expression in a temporal lobe epilepsy model. Acta Neurobiol Exp 74(3):276–287 Wars

    Google Scholar 

  121. Scharfman HE, MacLusky NJ (2006) Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front Neuroendocrinol 27(4):415–435. doi:10.1016/j.yfrne.2006.09.004

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Harte-Hargrove LC, Maclusky NJ, Scharfman HE (2013) Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 239:46–66. doi:10.1016/j.neuroscience.2012.12.029

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wei LC, Ding YX, Liu YH, Duan L, Bai Y, Shi M, Chen LW (2012) Low-dose radiation stimulates Wnt/beta-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo. Curr Alzheimer Res 9(3):278–289

    CAS  PubMed  Google Scholar 

  124. Sharma J, Mulherkar S, Mukherjee D, Jana NR (2012) Malin regulates Wnt signaling pathway through degradation of dishevelled2. J Biol Chem 287(9):6830–6839. doi:10.1074/jbc.M111.315135

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang Y, Appleton BA, Wiesmann C, Lau T, Costa M, Hannoush RN, Sidhu SS (2009) Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat Chem Biol 5(4):217–219. doi:10.1038/nchembio.152

    CAS  PubMed  Google Scholar 

  126. Fujii N, You L, Xu Z et al (2007) An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res 67(2):573–579. doi:10.1158/0008-5472.can-06-2726

    CAS  PubMed  Google Scholar 

  127. Kuruba R, Shetty AK (2007) Could hippocampal neurogenesis be a future drug target for treating temporal lobe epilepsy? CNS Neurol Disord Drug Targets 6(5):342–357

    CAS  PubMed  Google Scholar 

  128. Shin J, Shin Y, Oh SM et al (2014) MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/beta-catenin signaling. Cell Death Dis 5:e1473. doi:10.1038/cddis.2014.439

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wakabayashi T, Hidaka R, Fujimaki S, Asashima M, Kuwabara T (2014) MicroRNAs and epigenetics in adult neurogenesis. Adv Genet 86:27–44. doi:10.1016/b978-0-12-800222-3.00002-4

    PubMed  Google Scholar 

  130. Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S, Aronica E (2014) Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis 62:508–520. doi:10.1016/j.nbd.2013.10.026

    CAS  PubMed  Google Scholar 

  131. Thorne CA, Hanson AJ, Schneider J et al (2010) Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol 6(11):829–836. doi:10.1038/nchembio.453

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang SM, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. doi:10.1038/nature08356

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Zhou or Jin-Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Fu, XH., Zhou, D. et al. The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target?. Neurochem Res 40, 1319–1332 (2015). https://doi.org/10.1007/s11064-015-1614-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1614-1

Keywords

Navigation