Skip to main content

Advertisement

Log in

Centella asiatica and Its Fractions Reduces Lipid Peroxidation Induced by Quinolinic Acid and Sodium Nitroprusside in Rat Brain Regions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in several pathologies including neurological disorders. Centella asiatica is a popular medicinal plant which has long been used to treat neurological disturbances in Ayurvedic medicine. In the present study, we quantified of compounds by high performance liquid chromatography (HPLC) and examined the phenolic content of infusion, ethyl acetate, n-butanolic and dichloromethane fractions. Furthermore, we analyzed the ability of the extracts from C. asiatica to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) radical as well as total antioxidant activity through the reduction of molybdenum (VI) (Mo6+) to molybdenum (V) (Mo5+). Finally, we examined the antioxidant effect of extracts against oxidant agents, quinolinic acid (QA) and sodium nitroprusside (SNP), on homogenates of different brain regions (cerebral cortex, striatum and hippocampus). The HPLC analysis revealed that flavonoids, triterpene glycoside, tannins, phenolic acids were present in the extracts of C. asiatica and also the phenolic content assay demonstrated that ethyl acetate fraction is rich in these compounds. Besides, the ethyl acetate fraction presented the highest antioxidant effect by decreasing the lipid peroxidation in brain regions induced by QA. On the other hand, when the pro-oxidant agent was SNP, the potency of infusion, ethyl acetate and dichloromethane fractions was equivalent. Ethyl acetate fraction from C. asiatica also protected against thiol oxidation induced by SNP and QA. Thus, the therapeutic potential of C. asiatica in neurological diseases could be associated to its antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Halliwell B (2011) Free radicals and antioxidants—quo vadis? Trends Pharmacol Sci 32:125–130

    Article  CAS  PubMed  Google Scholar 

  2. Mugesh G, du Mont WW, Sies H (2001) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101:2125–2179

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272

    Article  CAS  PubMed  Google Scholar 

  4. Silva JP, Coutinho OP (2010) Free radicals in the regulation of damage and cell death—basic mechanisms and prevention. Drug Discov Ther 4:144–167

    CAS  PubMed  Google Scholar 

  5. Berg D, Youdim MB, Riederer P (2004) Redox imbalance. Cell Tissue Res 318:201–213

    Article  PubMed  Google Scholar 

  6. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    Article  CAS  PubMed  Google Scholar 

  7. Duffy S, So A, Murphy TH (1998) Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J Neurochem 71:69–77

    Article  CAS  PubMed  Google Scholar 

  8. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620

    CAS  PubMed  Google Scholar 

  9. Maxwell SR (1995) Prospects for the use of antioxidant therapies. Drugs 49:345–361

    Article  CAS  PubMed  Google Scholar 

  10. Veerendra Kumar MH, Gupta YK (2002) Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol 79:253–260

    Article  CAS  PubMed  Google Scholar 

  11. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942

    Article  CAS  PubMed  Google Scholar 

  12. Sorolla MA, Rodriguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J et al (2012) Protein oxidation in Huntington disease. Biofactors 38:173–185

    Article  CAS  PubMed  Google Scholar 

  13. Avila DS, Gubert P, Palma A, Colle D, Alves D et al (2008) An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats. Brain Res Bull 76:114–123

    Article  CAS  PubMed  Google Scholar 

  14. Dobrachinski F, Bastos LL, Bridi JC, Corte CL, de Avila DS et al (2012) Cooperation of non-effective concentration of glutamatergic system modulators and antioxidant against oxidative stress induced by quinolinic acid. Neurochem Res 37:1993–2003

    Article  CAS  PubMed  Google Scholar 

  15. Sudati JH, Vieira FA, Pavin SS, Dias GR, Seeger RL et al (2013) Valeriana officinalis attenuates the rotenone-induced toxicity in Drosophila melanogaster. Neurotoxicology 37:118–126

    Article  CAS  PubMed  Google Scholar 

  16. Pereira RP, Fachinetto R, de Souza Prestes A, Puntel RL, Santos da Silva GN et al (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res 34:973–983

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira DR, Schaffer LF, Busanello A, Barbosa CP, Peroza LR et al (2015) Silymarin has antioxidant potential and changes the activity of Na+/K+-ATPase and monoamine oxidase in vitro. Ind Crops Prod 70:347–355

    Article  Google Scholar 

  18. Rauhala P, Khaldi A, Mohanakumar KP, Chiueh CC (1998) Apparent role of hydroxyl radicals in oxidative brain injury induced by sodium nitroprusside. Free Radic Biol Med 24:1065–1073

    Article  CAS  PubMed  Google Scholar 

  19. Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago-Lopez D, Villeda-Hernandez J et al (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86:479–488

    Article  CAS  PubMed  Google Scholar 

  20. Maharaj H, Maharaj DS, Daya S (2006) Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity. Metab Brain Dis 21:189–199

    Article  CAS  PubMed  Google Scholar 

  21. Schuck PF, Tonin A, da Costa Ferreira G, Rosa RB, Latini A et al (2007) In vitro effect of quinolinic acid on energy metabolism in brain of young rats. Neurosci Res 57:277–288

    Article  CAS  PubMed  Google Scholar 

  22. Foster AC, Collins JF, Schwarcz R (1983) On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology 22:1331–1342

    Article  CAS  PubMed  Google Scholar 

  23. Akaike A, Katsuki H, Kume T, Maeda T (1999) Reactive oxygen species in NMDA receptor-mediated glutamate neurotoxicity. Parkinsonism Relat Disord 5:203–207

    Article  CAS  PubMed  Google Scholar 

  24. Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, Pedraza-Chaverrí J, Ríos C, Pérez-de la Cruz V (2013) Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. doi:10.1155/2013/104024

    PubMed Central  PubMed  Google Scholar 

  25. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  26. Xiong Y, Ding H, Xu M, Gao J (2009) Protective effects of asiatic acid on rotenone- or H2O2-induced injury in SH-SY5Y cells. Neurochem Res 34:746–754

    Article  CAS  PubMed  Google Scholar 

  27. Haleagrahara N, Ponnusamy K (2010) Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci 35:41–47

    Article  CAS  PubMed  Google Scholar 

  28. Kumar A, Prakash A, Dogra S (2011) Centella asiatica attenuates D-galactose-induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Int J Alzheimers Dis 2011:347569

    PubMed Central  PubMed  Google Scholar 

  29. Tabassum R, Vaibhav K, Shrivastava P, Khan A, Ejaz Ahmed M et al (2013) Centella asiatica attenuates the neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion rats. Neurol Sci 34:925–933

    Article  PubMed  Google Scholar 

  30. Wanasuntronwong A, Tantisira MH, Tantisira B, Watanabe H (2012) Anxiolytic effects of standardized extract of Centella asiatica (ECa 233) after chronic immobilization stress in mice. J Ethnopharmacol 143:579–585

    Article  PubMed  Google Scholar 

  31. Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY et al (1999) Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res 58:417–425

    Article  CAS  PubMed  Google Scholar 

  32. Luo Y, Yang YP, Liu J, Li WH, Yang J et al (2014) Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res 1565:37–47

    Article  CAS  PubMed  Google Scholar 

  33. Xu CL, Qu R, Zhang J, Li LF, Ma SP (2013) Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats. Fitoterapia 90:112–118

    Article  CAS  PubMed  Google Scholar 

  34. Boligon AA, Pereira RP, Feltrin AC, Machado MM, Janovik V et al (2009) Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresour Technol 100:6592–6598

    Article  CAS  PubMed  Google Scholar 

  35. Orhan IE (2012) Centella asiatica (L.) urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Altern Med. doi:10.1155/2012/946259

    Google Scholar 

  36. Rafamantanana MH, Rozet E, Raoelison GE, Cheuk K, Ratsimamanga SU et al (2009) An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (APIACEAE). J Chromatogr B Anal Technol Biomed Life Sci 877:2396–2402

    Article  CAS  Google Scholar 

  37. Boligon AA, Schwanz TG, Piana M, Bandeira RV, Frohlich JK et al (2013) Chemical composition and antioxidant activity of the essential oil of Tabernaemontana catharinensis A. DC. leaves. Nat Prod Res 27:68–71

    Article  CAS  PubMed  Google Scholar 

  38. Chandra S, De Mejia Gonzalez E (2004) Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. J Agric Food Chem 52:3583–3589

    Article  CAS  PubMed  Google Scholar 

  39. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  40. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

    Article  CAS  PubMed  Google Scholar 

  41. Schaffer LF, Peroza LR, Boligon AA, Athayde ML, Alves SH et al (2013) Harpagophytum procumbens prevents oxidative stress and loss of cell viability in vitro. Neurochem Res 38:2256–2267

    Article  CAS  PubMed  Google Scholar 

  42. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  43. Tian S, Shi Y, Zhou X, Ge L, Upur H (2011) Total polyphenolic (flavonoids) content and antioxidant capacity of different Ziziphora clinopodioides Lam. extracts. Pharmacogn Mag 7:65–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Castilho RF, Kowaltowski AJ, Vercesi AE (1996) The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioenerg Biomembr 28:523–529

    Article  CAS  PubMed  Google Scholar 

  45. Sousa SC, Maciel EN, Vercesi AE, Castilho RF (2003) Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone. FEBS Lett 543:179–183

    Article  CAS  PubMed  Google Scholar 

  46. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC et al (2006) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530:70–80

    Article  CAS  PubMed  Google Scholar 

  47. Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19:275–281

    Article  CAS  PubMed  Google Scholar 

  48. Vega-Naredo I, Poeggeler B, Sierra-Sanchez V, Caballero B, Tomas-Zapico C et al (2005) Melatonin neutralizes neurotoxicity induced by quinolinic acid in brain tissue culture. J Pineal Res 39:266–275

    Article  CAS  PubMed  Google Scholar 

  49. Perkins MN, Stone TW (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Pharmacol Exp Ther 226:551–557

    CAS  PubMed  Google Scholar 

  50. Stipek S, Stastny F, Platenik J, Crkovska J, Zima T (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30:233–237

    Article  CAS  PubMed  Google Scholar 

  51. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO et al (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627

    Article  CAS  PubMed  Google Scholar 

  52. Sudati JH, Fachinetto R, Pereira RP, Boligon AA, Athayde ML et al (2009) In vitro antioxidant activity of Valeriana officinalis against different neurotoxic agents. Neurochem Res 34:1372–1379

    Article  CAS  PubMed  Google Scholar 

  53. Oboh G, Ademiluyi AO, Akinyemi AJ (2012) Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol 64:315–319

    Article  CAS  PubMed  Google Scholar 

  54. Schubert A, Pereira DF, Zanin FF, Alves SH, Beck RC et al (2007) Comparison of antioxidant activities and total polyphenolic and methylxanthine contents between the unripe fruit and leaves of Ilex paraguariensis A. St. Hil. Pharmazie 62:876–880

    CAS  PubMed  Google Scholar 

  55. Lee K, Lee JS, Jang HJ, Kim SM, Chang MS et al (2012) Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia. Eur J Pharmacol 689:89–95

    Article  CAS  PubMed  Google Scholar 

  56. Stanely Mainzen Prince P, Kumar MR, Selvakumari CJ (2011) Effects of gallic acid on brain lipid peroxide and lipid metabolism in streptozotocin-induced diabetic Wistar rats. J Biochem Mol Toxicol 25:101–107

    Article  CAS  PubMed  Google Scholar 

  57. Mushtaq N, Schmatz R, Pereira LB, Ahmad M, Stefanello N et al (2014) Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats. Cell Biochem Funct 32:287–293

    Article  CAS  PubMed  Google Scholar 

  58. Kalonia H, Kumar P, Kumar A, Nehru B (2009) Effect of caffeic acid and rofecoxib and their combination against intrastriatal quinolinic acid induced oxidative damage, mitochondrial and histological alterations in rats. Inflammopharmacology 17:211–219

    Article  CAS  PubMed  Google Scholar 

  59. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100

    Article  CAS  PubMed  Google Scholar 

  60. Lee SY, Munerol B, Pollard S, Youdim KA, Pannala AS et al (2006) The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth. Free Radic Biol Med 40:323–334

    Article  CAS  PubMed  Google Scholar 

  61. Bors W, Michel C (1999) Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies. Free Radic Biol Med 27:1413–1426

    Article  CAS  PubMed  Google Scholar 

  62. Bors W, Michel C, Stettmaier K (2001) Structure-activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol 335:166–180

    CAS  PubMed  Google Scholar 

  63. Xu CL, Wang QZ, Sun LM, Li XM, Deng JM et al (2012) Asiaticoside: attenuation of neurotoxicity induced by MPTP in a rat model of Parkinsonism via maintaining redox balance and up-regulating the ratio of Bcl-2/Bax. Pharmacol Biochem Behav 100:413–418

    Article  CAS  PubMed  Google Scholar 

  64. Awad R, Levac D, Cybulska P, Merali Z, Trudeau VL et al (2007) Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system. Can J Physiol Pharmacol 85:933–942

    Article  CAS  PubMed  Google Scholar 

  65. Kristensen BW, Noraberg J, Zimmer J (2003) The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures. Brain Res 973:303–306

    Article  CAS  PubMed  Google Scholar 

  66. Frolund B, Ebert B, Kristiansen U, Liljefors T, Krogsgaard-Larsen P (2002) GABA(A) receptor ligands and their therapeutic potentials. Curr Top Med Chem 2:817–832

    Article  CAS  PubMed  Google Scholar 

  67. Yadav UC, Ramana KV (2013) Regulation of NF-kappaB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev 2013:690545

    Article  PubMed Central  PubMed  Google Scholar 

  68. Bates JN, Baker MT, Guerra R Jr, Harrison DG (1991) Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol 42(Suppl):S157–S165

    Article  CAS  PubMed  Google Scholar 

  69. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11:595–603

    Article  CAS  PubMed  Google Scholar 

  71. Veerendra Kumar MH, Gupta YK (2003) Effect of Centella asiatica on cognition an d oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol 30:336–342

    Article  CAS  PubMed  Google Scholar 

  72. Machawal L, Kumar A (2014) Possible involvement of nitric oxide mechanism in the neuroprotective effect of rutin against immobilization stress induced anxiety like behaviour, oxidative damage in mice. Pharmacol Rep 66:15–21

    Article  CAS  PubMed  Google Scholar 

  73. Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9:e105311

    Article  PubMed Central  PubMed  Google Scholar 

  74. Ross EK, Gray JJ, Winter AN, Linseman DA (2012) Immunocal® and preservation of glutathione as a novel neuroprotective strategy for degenerative disorders of the nervous system. Recent Pat CNS Drug Discov 7:230–235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by FAPERGS (2080-2551/13-5-PqG-001/2013) and PRONEM FAPERGS(11/2029-1). CAPES and CNPq (475210/2013-1) is gratefully acknowledged. F.A.A.S, M.L.A. and R.F. are recipient of CNPq fellowship. A.B. is recipient of CAPES fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roselei Fachinetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, N.F., Stefanello, S.T., Froeder, A.L.F. et al. Centella asiatica and Its Fractions Reduces Lipid Peroxidation Induced by Quinolinic Acid and Sodium Nitroprusside in Rat Brain Regions. Neurochem Res 40, 1197–1210 (2015). https://doi.org/10.1007/s11064-015-1582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1582-5

Keywords

Navigation