Skip to main content

Advertisement

Log in

The Oxysterol 27-Hydroxycholesterol Increases Oxidative Stress and Regulate Nrf2 Signaling Pathway in Astrocyte Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The disturbance in cholesterol metabolism has been considered as a cause of alzheimer’s disease (AD), which dues to the oxidative damage and cell apoptosis in the brain. We aimed to investigate the toxicity and mechanism of AD-like pathology caused by cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC) in astrocyte cells. C6 cells were treated with 0, 5, 10, 20 µM 27-OHC for 24 h (h). The cell viability was monitored by using methyl thiazolyl tetrazolium test, generation of reactive oxygen species (ROS) was measured by using 2′, 7′-dichlorodihydrofluorescein diacetate fluorescent probe under flow cytometry. The concentrations of 8-hydroxyl deoxyguanosine, the anti-oxidative enzymes such as total superoxide dismutase (tSOD), reduced glutathione (rGSH) and glutathione peroxidase (GSH-Px) were tested by using enzyme-linked immunosorbent assay and enzymic method, respectively. The gene and protein expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone 1 (NQO1) and γ-glutamylcysteine synthetase (γ-GCS) in C6 cells were detected by quantitative western blot analysis and real-time PCR analysis. Moreover, the Nrf2 expressions in both of the cytoplasm and nucleus were detected with western blot analysis, and the localization of Nrf2 was performed by immunocytochemistry and confocal microscopy. 27-OHC increased the levels of ROS and decreased the levels of tSOD, rGSH, GSH-Px in C6 cells dose-dependently. In addition, 27-OHC down regulated the expressions of Nrf2, HO-1, NQO1 and γ-GCS at both of gene and protein levels, while Nrf2 expression in the cytoplasm showed decreased trend after incubated for 24 h with 27-OHC. The cholesterol metabolite 27-OHC is toxic to C6 cells and contributed to oxidative damage via regulating the Nrf2 signaling pathway. Our results suggest that 27-OHC may represent a common pathogenic factor in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Orth M, Bellosta S (2012) Cholesterol: its regulation and role in central nervous. Cholesterol 2012:292598

    Article  PubMed Central  PubMed  Google Scholar 

  2. Cohen JI, Cazettes F, Convit A (2011) Abnormal cholesterol is associated with prefrontal white matter abnormalities among obese adults: a diffusion tensor imaging study. Neuroradiol J 1:989–997

    PubMed Central  PubMed  Google Scholar 

  3. Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 50:357–371

    Article  CAS  PubMed  Google Scholar 

  4. Phillips EC, Croft CL, Kurbatskaya K, O’Neill MJ, Hutton ML, Hanger DP, Garwood CJ, Noble W (2014) Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans 42:1321–1325

    Article  CAS  PubMed  Google Scholar 

  5. Marwarha G, Ghribi O (2014) Does the oxysterol 27-hydroxycholesterol underlie alzheimer’s disease—Parkinson’s disease overlap? Exp Gerontol. doi:10.1016/j.exger.2014.09.013

    PubMed  Google Scholar 

  6. Björkhem I, Cedazo-Minguez A, Leoni V, Meaney S (2009) Oxysterols and neurodegenerative diseases. Mol Asp Med 30:171–179

    Article  Google Scholar 

  7. Phan HT, Hata T, Morita M, Yoda T, Hamada T, Vestergaard MC, Takagi M (2013) The effect of oxysterols on the interaction of alzheimer’s amyloid beta with model membranes. Biochem Biophys Acta 1828:2487–2495

    Article  CAS  PubMed  Google Scholar 

  8. Ghribi O, Larsen B, Schrag M, Herman MM (2006) High cholesterol content in neurons increases BACE, beta-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp Neurol 200:460–467

    Article  CAS  PubMed  Google Scholar 

  9. Lesne SE (2014) Toxic oligomer species of amyloid-β in alzheimer’s disease, a timing issue. Swiss Med Wkly 144:w14021

    PubMed  Google Scholar 

  10. Martín MG, Pfrieger F, Dotti CG (2014) Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 15:1036–1052

    Article  PubMed  Google Scholar 

  11. Gosselet F, Saint-Pol J, Fenart L (2014) Effects of oxysterols on the blood-brain barrier: implications for alzheimer’s disease. Biochem Biophys Res Commun 446:687–691

    Article  CAS  PubMed  Google Scholar 

  12. Milagre I, Olin M, Nunes MJ, Moutinho M, Lövgren-Sandblom A, Gama MJ, Björkhem I, Rodrigues E (2012) Marked change in the balance between CYP27A1 and CYP46A1 mediated elimination of cholesterol during differentiation of human neuronal cells. Neurochem Int 60:192–198

    Article  CAS  PubMed  Google Scholar 

  13. Ohtsuki S, Ito S, Matsuda A, Hori S, Abe T, Terasaki T (2007) Brain-to-blood elimination of 24S-hydroxycholesterol from rat brain is mediated by organic anion transporting polypeptide 2 (oatp2) at the blood-brain barrier. J Neurochem 103:1430–1438

    Article  CAS  PubMed  Google Scholar 

  14. Heverin M, Bogdanovic N, Lütjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B, Björkhem I (2004) Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 45:186–193

    Article  CAS  PubMed  Google Scholar 

  15. Vejux A, Malvitte L, Lizard G (2008) Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 41:545–556

    Article  CAS  PubMed  Google Scholar 

  16. Joffre C, Leclère L, Buteau B, Martine L, Cabaret S, Malvitte L, Acar N, Lizard G, Bron A, Creuzot-Garcher C, Bretillon L (2007) Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells. Curr Eye Res 32:271–280

    Article  CAS  PubMed  Google Scholar 

  17. Shafaati M, Marutle A, Pettersson H, Lövgren-Sandblom A, Olin M, Pikuleva I, Winblad B, Nordberg A, Björkhem I (2011) Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J Lipid Res 52:1004–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O (2010) The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells. BMC Opthalmology 10:1–12

    Article  Google Scholar 

  19. Famer D, Meaney S, Mousavi M, Nordberg A, Björkhem I, Crisby M (2007) Regulation of alpha-and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway. Biochem Biophys Res Commun 359:46–50

    Article  CAS  PubMed  Google Scholar 

  20. Brown J 3rd, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B (2004) Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 279:34674–34681

    Article  CAS  PubMed  Google Scholar 

  21. Gamba P, Testa G, Sottero B, Gargiulo S, Poli G, Leonarduzzi G (2009) The link between altered cholesterol metabolism and Alzheimer’s disease. Ann NY Acad Sci 1259:54–64

    Article  Google Scholar 

  22. Morris MC (2009) The role of nutrition in Alzheimer’s disease: epidemiological evidence. Eur J Neurol 16(Suppl 1):1–7

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sparks DL, Kuo YM, Roher A, Martin T, Lukas RJ (2000) Alterations of Alzheimer’s disease in the cholesterol-fed rabbit, including vascular inflammation. Ann NY Acad Sci 903:335–344

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Zhang X, Kusumo H, Costa LG, Guizzetti M (2013) Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis. Biochem Biophys Acta 1831:263–275

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Zwingmann C, Leibfritz D, Hazell AS (2003) Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab 23:756–771

    Article  CAS  PubMed  Google Scholar 

  26. Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524

    Article  CAS  PubMed  Google Scholar 

  27. Xi YD, Yu HL, Ma WW, Ding BJ, Ding J, Yuan LH, Feng JF, Xiao R (2011) Genistein inhibits mitochondrial-targeted oxidative damage induced by beta-amyloid peptide 25-35 in PC12 cells. J Bioenerg Biomembr 43:399–407

    Article  CAS  PubMed  Google Scholar 

  28. Ma WW, Hou CC, Zhou X, Yu HL, Xi YD, Ding J, Zhao X, Xiao R (2013) Genistein alleviates the mitochondriatargeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells. Neurochem Res 38:1315–1323

    Article  CAS  PubMed  Google Scholar 

  29. Azad GK, Singh V, Mandal P, Singh P, Golla U, Baranwal S, Chauhan S, Tomar RS (2014) Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio 4:77–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139

    Article  CAS  PubMed  Google Scholar 

  31. Huang MC, Chen CC, Pan CH, Chen CH (2014) Comparison of oxidative DNA damage between alcohol-dependent patients with and without delirium tremens. Alcohol Clin Exp Res 38:2523–2528

    Article  CAS  PubMed  Google Scholar 

  32. Joshi G, Gan KA, Johnson DA, Johnson JA (2014) Increased Alzheimer’s disease-like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2014.09.004

    Google Scholar 

  33. Ma WW, Yu HL, Yu HL, Ding BJ, Xi YD, Feng JF, Xiao R (2010) Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25–35 in PC12 cells. Inter J Dev Neurosci 28(4):289–295

    Article  Google Scholar 

  34. Ding J, Yu HL, Ma WW, Xi YD, Zhao X, Yuan LH, Feng JF, Xiao R (2013) Soy isoflavone attenuates brain mitochondrial oxidative stress induced by beta-amyloid peptides 1-42 injection in lateral cerebral ventricle. J Neurosci Res 91:562–567

    Article  CAS  PubMed  Google Scholar 

  35. Vomhof-Dekrey EE, Picklo MJ (2012) The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem 23:1201–1206

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zheng W, Liu X, Xue P, Jiang S, Lu D, Zhang Q, He G, Pi J, Andersen M, Tan H, Qu W (2014) Iodoacetic acid activates Nrf2-mediated antioxidant response in vitro and in vivo. Environ Sci Technol 48:13478–13488

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative Stress. J Biol Chem 284(20):13291–13295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Son Y, Lee JH, Chung HT, Pae HO (2013) Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid Med Cell Longev 2013:1–8

    Article  Google Scholar 

  39. Ryu MJ, Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, Chung HS, Kim SC, Jung E, Park D, Chae S, Hyun JW (2014) 7,8-Dihydroxyflavone protects human keratinocytes against oxidative stress-induced cell damage via the ERK and PI3K/Akt-mediated Nrf2/HO-1 signaling pathways. Int J Mol Med 33:964–970

    CAS  PubMed  Google Scholar 

  40. Li L, Du JK, Zou LY, Wu T, Lee YW, Kim YH (2013) Decursin Isolated from Angelica gigas Nakai Rescues PC12 Cells from Amyloid β-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: potential Roles of MAPK. Evid Based Complement Altern Med 2013:1–14

    Google Scholar 

  41. Vaya J, Song W, Khatib S, Geng G, Schipper HM (2007) Effects of heme oxygenase-1 expression on sterol homeostasis in rat astroglia. Free Radic Biol Med 42:864–871

    Article  CAS  PubMed  Google Scholar 

  42. Hascalovici JR, Song W, Liberman A, Vaya J, Khatib S, Holcroft C, Laferla F, Schipper HM (2014) Neural HO-1/sterol interactions in vivo: implications for Alzheimer’s disease. Neuroscience 280C:40–49

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from Project supported by the State Key Program of National Natural Science of China (Grant No. 81330065).

Conflict of interest

The authors declared none conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Xiao.

Additional information

Wei-Wei Ma and Chao-Qun Li have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WW., Li, CQ., Yu, HL. et al. The Oxysterol 27-Hydroxycholesterol Increases Oxidative Stress and Regulate Nrf2 Signaling Pathway in Astrocyte Cells. Neurochem Res 40, 758–766 (2015). https://doi.org/10.1007/s11064-015-1524-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1524-2

Keywords

Navigation