Skip to main content
Log in

Erythropoietin Attenuates Advanced Glycation Endproducts-Induced Toxicity of Schwann Cells In Vitro

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Advanced glycation endproducts (AGEs)-induced cytotoxicity is regarded as one of the main mechanisms responsible for neurological disorders. Although erythropoietin (EPO) is demonstrated to have neuroprotective effects in neurodegenerative diseases, the effects of EPO on AGEs-induced toxicity of Schwann cells (SCs) remain open for investigation. Primary cultured SCs isolated from 4 day-old Wistar rats were exposed to AGEs with or without EPO treatment for 5 days. AGEs decreased cell viability, increased apoptotic rate, elevated intracellular reactive oxygen species levels, and reduced total glutathione levels of SCs. The AGEs-induced toxic effects on SCs were partially blocked by AGER siRNA or AGER inhibitor FPS-ZM1. SCs exposed to AGEs exhibited higher mRNA and protein levels of receptor for AGEs (AGER), EPO, and EPO receptor (EPOR). Exogenous EPO treatment attenuated AGEs-induced oxidative stress and apoptosis probably by reducing the mRNA and protein expression of AGER. The protective effect of EPO against AGEs-induced toxicity was blocked by EPOR siRNA. The data of the present study gives, for the first time, evidence of the protective effects of EPO on SCs with AGEs-induced oxidative stress and apoptosis. These results imply that EPO might be a novel valuable agent for treating AGEs-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vlassara H, Striker GE (2011) AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7:526–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Stirban A, Gawlowski T, Roden M (2013) Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 3:94–108

    Article  PubMed Central  PubMed  Google Scholar 

  3. Münch G, Westcott B, Menini T, Gugliucci A (2012) Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 42:1221–1236

    Article  PubMed  Google Scholar 

  4. Chen J, Song M, Yu S, Gao P, Yu Y, Wang H, Huang L (2009) Advanced glycation end products alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress. Mol Cell Biochem 335:137–146

    Article  PubMed  Google Scholar 

  5. Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38:1995–1999

    Article  CAS  PubMed  Google Scholar 

  6. Campana WM (2007) Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun 21:522–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hoke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655

    Article  CAS  PubMed  Google Scholar 

  8. Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, Feldman EL (2007) Receptor for advanced glycation end products activation injures primarysensory neurons via oxidative stress. Endocrinology 148:548–558

    Article  CAS  PubMed  Google Scholar 

  9. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2011) Advanced glycation endproducts and their receptor rage in Alzheimer’s disease. Neurobiol Aging 32:763–777

    Article  CAS  PubMed  Google Scholar 

  10. Yin QQ, Dong CF, Dong SQ, Dong XL, Hong Y, Hou XY, Luo DZ, Pei JJ, Liu XP (2012) AGEs induce cell death via oxidative and endoplasmic reticulum stresses in both human SH-SY5Y neuroblastoma cells and rat cortical neurons. Cell Mol Neurobiol 32:1299–1309

    Article  CAS  PubMed  Google Scholar 

  11. Yoon MS, Katsarava Z, Obermann M, Schäfers M, Liedert B, Dzagnidze A, Kribben A, Egensperger R, Limmroth V, Diener HC, Thomale J (2009) Erythropoietin overrides the triggering effect of DNA platination products in a mouse model of cisplatin-induced neuropathy. BMC Neurosci 10:77

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hasselblatt M, Ehrenreich H, Sirén AL (2006) The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 18:132–138

    Article  PubMed  Google Scholar 

  13. Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR (2006) Erythropoietin reduces Schwann cell TNF-alpha, wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci 23:617–626

    Article  PubMed  Google Scholar 

  14. Kumral A, Tuzun F, Oner MG, Genc S, Duman N, Ozkan H (2011) Erythropoietin in neonatal brain protection: the past, the present and the future. Brain Dev 33:632–643

    Article  PubMed  Google Scholar 

  15. Yu T, Li L, Bi Y, Liu Z, Liu H, Li Z (2014) Erythropoietin attenuates oxidative stress and apoptosis in Schwann cells isolated from streptozotocin-induced diabetic rats. J Pharm Pharmacol 66:1150–1160

    CAS  PubMed  Google Scholar 

  16. Zhu Chunpeng, Wei Hu, Hao Wu, Xun Hu (2014) No evident dose-response relationship between cellular ROS level and its cytotoxicity—a paradoxical issue in ROS-based cancer therapy. Sci Rep 4:5029

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhu H, Wang WJ, Ding WL, Li F, He J (2008) Effect of panaxydol on hypoxia-induced cell death and expression and secretion of neurotrophic factors (NTFs) in hypoxic primary cultured Schwann cells. Chem Biol Interact 174:44–50

    Article  CAS  PubMed  Google Scholar 

  18. Sun LQ, Zhao J, Zhang TT, Qu L, Wang X, Xue B, Li XJ, Mu YM, Lu JM (2012) Protective effects of Salvianolic acid B on Schwann cells apoptosis induced by high glucose. Neurochem Res 37:996–1010

    Article  CAS  PubMed  Google Scholar 

  19. Muscat S, Pelka J, Hegele J, Weigle B, Münch G, Pischetsrieder M (2007) Coffee and maillard products activate nf-kappab in macrophages via H2O2 production. Mol Nutr Food Res 51:525–535

    Article  CAS  PubMed  Google Scholar 

  20. Loske C, Neumann A, Cunningham AM et al (1998) Cytotoxicity of advanced glycation endproducts is mediated by oxidative stress. J Neural Transm 105(8–9):1005–1015

    Article  CAS  PubMed  Google Scholar 

  21. Ding Y, Kantarci A, Hasturk H, Nichol K, Schinzel R, Riederer P, Münch G (2007) Activation of RAGE induces elevated O2-generation by mononuclear phagocytes in diabetes. J Leukoc Biol 81:520–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor rage: a mechanism for amplification of inflammatory responses. Circulation 105:816–822

    Article  CAS  PubMed  Google Scholar 

  23. Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE (2007) The role of erythropoietin in central and peripheral nerve injury. Clin Neurol Neurosurg 109:639–644

    Article  PubMed  Google Scholar 

  24. Keswania SC, Bosch-Marcéb M, Reeda N, Fischer A, Semenza GL, Höke A (2011) Nitric oxide prevents axonal degeneration by inducing HIF-1–dependent expression of erythropoietin. Proc Natl Acad Sci USA 108:4986–4890

  25. Campana WM, Myers RR (2001) Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J 15:1804–1806

    CAS  PubMed  Google Scholar 

  26. Maiese K, Chong ZZ, Li F, Shang YC (2008) Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 85:194–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li X, Gonias SL, Campana WM (2005) Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51:254–265

    Article  PubMed  Google Scholar 

  28. Keswani SC, Buldanlioglu U, Fischer A, Reed N, Polley M, Liang H, Zhou C, Jack C, Leitz GJ, Hoke A (2004) A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 56:815–826

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81371929).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Li, L., Chen, T. et al. Erythropoietin Attenuates Advanced Glycation Endproducts-Induced Toxicity of Schwann Cells In Vitro. Neurochem Res 40, 698–712 (2015). https://doi.org/10.1007/s11064-015-1516-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1516-2

Keywords

Navigation