Skip to main content
Log in

Monocular Deprivation Delays the Dynamic Changes of Phosphorylated Synapsin Ia/b at Site-1 in Contralateral Visual Cortex of Juvenile Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21–26 % of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71–74 % at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35–60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21–42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379

    Article  CAS  PubMed  Google Scholar 

  2. Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780

    Article  CAS  PubMed  Google Scholar 

  3. Toth K, McBain CJ (2000) Target-specific expression of pre- and postsynaptic mechanisms. J Physiol 525(Pt 1):41–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91:313–348

    Article  CAS  PubMed  Google Scholar 

  5. Kao HT, Song HJ, Porton B, Ming GL, Hoh J, Abraham M, Czernik AJ, Pieribone VA, Poo MM, Greengard P (2002) A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth. Nat Neurosci 5:431–437

    CAS  PubMed  Google Scholar 

  6. Porton B, Kao HT, Greengard P (1999) Characterization of transcripts from the synapsin III gene locus. J Neurochem 73:2266–2271

    Article  CAS  PubMed  Google Scholar 

  7. Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De CP (1989) Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245:1474–1480

    Article  CAS  PubMed  Google Scholar 

  8. Walaas SI, Browning MD, Greengard P (1988) Synapsin Ia, synapsin Ib, protein IIIa, and protein IIIb, four related synaptic vesicle-associated phosphoproteins, share regional and cellular localization in rat brain. J Neurochem 51:1214–1220

    Article  CAS  PubMed  Google Scholar 

  9. Kao HT, Li P, Chao HM, Janoschka S, Pham K, Feng J, Mcewen BS, Greengard P, Pieribone VA, Porton B (2008) Early involvement of synapsin III in neural progenitor cell development in the adult hippocampus. J Comp Neurol 507:1860–1870

    Article  CAS  PubMed  Google Scholar 

  10. Humeau Y, Doussau F, Vitiello F, Greengard P, Benfenati F, Poulain B (2001) Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J Neurosci 21:4195–4206

    CAS  PubMed  Google Scholar 

  11. Sato K, Morimoto K, Suemaru S, Sato T, Yamada N (2000) Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus. Brain Res 872:219–222

    Article  CAS  PubMed  Google Scholar 

  12. Kushner SA, Elgersma Y, Murphy GG, Jaarsma D, van Woerden GM, Hojjati MR, Cui Y, LeBoutillier JC, Marrone DF, Choi ES, De Zeeuw CI, Petit TL, Pozzo-Miller L, Silva AJ (2005) Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. J Neurosci 25:9721–9734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Beston BR, Jones DG, Murphy KM (2010) Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2:138

    Article  PubMed Central  PubMed  Google Scholar 

  14. Dahlhaus M, Li KW, van der Schors RC, Saiepour MH, Van Nierop P, Heimel JA, Hermans JM, Loos M, Smit AB, Levelt CN (2011) The synaptic proteome during development and plasticity of the mouse visual cortex. Mol Cell Proteomics 10:M110

    Article  PubMed Central  PubMed  Google Scholar 

  15. Scott LL, Kogan D, Shamma AA, Quinlan EM (2010) Differential regulation of synapsin phosphorylation by monocular deprivation in juveniles and adults. Neuroscience 166:539–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286

    CAS  PubMed  Google Scholar 

  17. Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J (2011) Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCgamma-mediated molecular mechanism. Neurochem Int 58:684–692

    Article  CAS  PubMed  Google Scholar 

  18. Huttner WB, DeGennaro LJ, Greengard P (1981) Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases. J Biol Chem 256:1482–1488

    CAS  PubMed  Google Scholar 

  19. Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M, Benfenati F, Greengard P (1998) A third member of the synapsin gene family. Proc Natl Acad Sci USA 95:4667–4672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bogen IL, Jensen V, Hvalby O, Walaas SI (2009) Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain. Neuroscience 158:231–241

    Article  CAS  PubMed  Google Scholar 

  21. Bonanomi D, Menegon A, Miccio A, Ferrari G, Corradi A, Kao HT, Benfenati F, Valtorta F (2005) Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J Neurosci 25:7299–7308

    Article  CAS  PubMed  Google Scholar 

  22. Perlini LE, Botti F, Fornasiero EF, Giannandrea M, Bonanomi D, Amendola M, Naldini L, Benfenati F, Valtorta F (2011) Effects of phosphorylation and neuronal activity on the control of synapse formation by synapsin I. J Cell Sci 124:3643–3653

    Article  CAS  PubMed  Google Scholar 

  23. Griesbach GS, Hovda DA, Molteni R, Gomez-Pinilla F (2002) Alterations in BDNF and synapsin I within the occipital cortex and hippocampus after mild traumatic brain injury in the developing rat: reflections of injury-induced neuroplasticity. J Neurotrauma 19:803–814

    Article  PubMed  Google Scholar 

  24. Takamura H, Ichisaka S, Hayashi C, Maki H, Hata Y (2007) Monocular deprivation enhances the nuclear signalling of extracellular signal-regulated kinase in the developing visual cortex. Eur J Neurosci 26:2884–2898

    Article  PubMed  Google Scholar 

  25. Park HJ, Kim SK, Kang WS, Chung JH, Kim JW (2014) Increased activation of synapsin 1 and mitogen-activated protein kinases/extracellular signal-regulated kinase in the amygdala of maternal separation rats. CNS Neurosci Ther 20:172–181

    Article  CAS  PubMed  Google Scholar 

  26. Boggio EM, Putignano E, Sassoe-Pognetto M, Pizzorusso T, Giustetto M (2007) Visual stimulation activates ERK in synaptic and somatic compartments of rat cortical neurons with parallel kinetics. Plos One 2:e604

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  CAS  PubMed  Google Scholar 

  28. Sato M, Stryker MP (2008) Distinctive features of adult ocular dominance plasticity. J Neurosci 28:10278–10286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Seed Grant of International Alliance of Translational Neuroscience (PXM2014-014226-000006), National Natural Science Foundation of China (Grant Nos. 31171147 and 31471142), Beijing Natural Science Foundation (Grant Nos. 7141001, 7132057), and Excellent Talent Training Aid from the Organization Department of Beijing Government (2010D003034000007).

Conflict of interest

The authors confirm that there are no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Fu or Junfa Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Su, Q., Xi, P. et al. Monocular Deprivation Delays the Dynamic Changes of Phosphorylated Synapsin Ia/b at Site-1 in Contralateral Visual Cortex of Juvenile Mice. Neurochem Res 40, 524–530 (2015). https://doi.org/10.1007/s11064-014-1492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1492-y

Keywords

Navigation