Skip to main content

Advertisement

Log in

The Chaperone Grp78 in Protein Folding Disorders of the Nervous System

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chaperones are essential for the proper folding of proteins, and their dysfunction or depletion may be a key factor in protein folding disorders in the central nervous system. In normal conditions the cell regulates the proper folding of proteins by endoplasmic reticulum chaperones, called heat shock proteins, the cellular machinery that correctly folds newly synthesized and partially folded proteins or initiates degradation of misfolded proteins. Maintaining protein homeostasis within the cell is vital for the cells to function and survive. However, under conditions of cellular stress, proteastatic mechanisms must be activated to recycle, refold, or initiate degradation of misfolded or unfolded proteins. In this commentary, we will discuss the importance of chaperones, more specifically the 78 kd glucose regulated protein Grp78 (also known as BiP and HSP5a), in Parkinson’s, Alzheimer’s, Huntington’s, and prion diseases, and the role that metals may play in exacerbating neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei J, Hendershot LM (1996) Protein folding and assembly in the endoplasmic reticulum. Exs 77:41–55

    CAS  PubMed  Google Scholar 

  2. Reynaud E (2010) Protein misfolding and degenerative diseases. Nat Educ 3(9):28

    Google Scholar 

  3. Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286(5446):1888–1893

    Article  CAS  PubMed  Google Scholar 

  4. Ebrahimi-Fakhari D, Saidi LJ, Wahlster L (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun 1(1):79

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28(1–2):51–65

    Article  CAS  PubMed  Google Scholar 

  6. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  7. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper W (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172

    Article  CAS  PubMed  Google Scholar 

  8. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354(3):707–711

    Article  CAS  PubMed  Google Scholar 

  9. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65(4):348–357

    Article  CAS  PubMed  Google Scholar 

  11. Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B, Dubeau L, Hinton DR et al (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 17(3):488–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Djaldetti R, Hellmann M, Melamed E (2004) Bent knees and tiptoeing: late manifestations of end-stage Parkinson’s disease. Mov Disord 19(11):1325–1328

    Article  PubMed  Google Scholar 

  13. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, Missale C, Spano P (2011) Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson’s disease. J Neurochem 116(4):588–605

    Article  CAS  PubMed  Google Scholar 

  15. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci 32(10):3306–3320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS, Muzyczka N, Gorbatyuk OS (2012) Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gorbatyuk MS, Gorbatyuk OS (2013)The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: a mini review. J Genet Syndr Gene Ther 4(2). doi:10.4172/2157-7412.1000128

  18. Hashida K, Kitao Y, Sudo H, Awa Y, Maeda S, Mori K, Takahashi R, Iinuma M, Hori O (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS One 7(10):e47950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  CAS  PubMed  Google Scholar 

  20. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  21. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

    Article  CAS  PubMed  Google Scholar 

  22. Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90(3):549–558

    Article  CAS  PubMed  Google Scholar 

  23. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96(8):4604–4609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Labbadia J, Novoselov SS, Bett JS, Weiss A, Paganetti P, Bates GP, Cheetham ME (2012) Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135(Pt 4):1180–1196

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lajoie P, Snapp EL (2011) Changes in BiP availability reveal hypersensitivity to acute endoplasmic reticulum stress in cells expressing mutant huntingtin. J Cell Sci 124(Pt 19):3332–3343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Neef DW, Turski ML, Thiele DJ (2010) Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 8(1):e1000291

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bersuker K, Hipp MS, Calamini B, Morimoto RI, Kopito RR (2013) Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J Biol Chem 288(33):23633–23638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ryno LM, Genereux JC, Naito T, Morimoto RI, Powers ET, Shoulders MD, Wiseman RL (2014) Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol 9(6):1273–1283

  29. Backman L, Jones S, Berger AK, Laukka EJ, Small BJ (2004) Multiple cognitive deficits during the transition to Alzheimer’s disease. J Intern Med 256(3):195–204

    Article  CAS  PubMed  Google Scholar 

  30. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24

    Article  CAS  PubMed  Google Scholar 

  31. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689

    Article  CAS  PubMed  Google Scholar 

  32. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  33. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  34. Kakimura J, Kitamura Y, Takata K, Tsuchiya D, Taniguchi T, Gebicke-Haerter PJ, Smith MA, Perry G, Shimohama S (2002) Possible involvement of ER chaperone Grp78 on reduced formation of amyloid-beta deposits. Ann N Y Acad Sci 977:327–332

    Article  CAS  PubMed  Google Scholar 

  35. Yoo BC, Krapfenbauer K, Cairns N, Belay G, Bajo M, Lubec G (2002) Overexpressed protein disulfide isomerase in brains of patients with sporadic Creutzfeldt–Jakob disease. Neurosci Lett 334(3):196–200

    Article  CAS  PubMed  Google Scholar 

  36. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838

    PubMed  Google Scholar 

  37. Alberdi E, Wyssenbach A, Alberdi M, Sanchez-Gomez MV, Cavaliere F, Rodriguez JJ, Verkhratsky A, Matute C (2013) Ca(2+)-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid beta-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12(2):292–302

    Article  CAS  PubMed  Google Scholar 

  38. Prusiner SB (1991) Molecular biology of prion diseases. Science 252(5012):1515–1522

    Article  CAS  PubMed  Google Scholar 

  39. Hetz CA, Soto C (2006) Stressing out the ER: a role of the unfolded protein response in prion-related disorders. Curr Mol Med 6(1):37–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22(20):5435–5445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kenward N, Hope J, Landon M, Mayer RJ (1994) Expression of polyubiquitin and heat-shock protein 70 genes increases in the later stages of disease progression in scrapie-infected mouse brain. J Neurochem 62(5):1870–1877

    Article  CAS  PubMed  Google Scholar 

  42. Shyu WC, Kao MC, Chou WY, Hsu YD, Soong BW (2000) Creutzfeldt–Jakob disease: heat shock protein 70 mRNA levels in mononuclear blood cells and clinical study. J Neurol 247(12):929–934

    Article  CAS  PubMed  Google Scholar 

  43. Fernandez-Funez P, Casas-Tinto S, Zhang Y, Gomez-Velazquez M, Morales-Garza MA, Cepeda-Nieto AC, Castilla J, Soto C, Rincon-Limas DE (2009) In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms. PLoS Genet 5(6):e1000507

    Article  PubMed Central  PubMed  Google Scholar 

  44. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA et al (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138

    Article  PubMed  Google Scholar 

  45. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA et al (2012) Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 485(7399):507–511

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Tiffany-Castiglioni E, Qian Y (2012) ER chaperone-metal interactions: links to protein folding disorders. Neurotoxicology 33(3):545–557

    Article  CAS  PubMed  Google Scholar 

  47. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6(4):221–230

    Article  CAS  PubMed  Google Scholar 

  48. Crichton R, Dexter DT, Ward RJ (2008) Metal based neurodegenerative diseases—from molecular mechanisms to therapeutic strategies. Coord Chem Rev 252(10–11):1189–1199

    Article  CAS  Google Scholar 

  49. Hesketh S, Sassoon J, Knight R, Brown DR (2008) Elevated manganese levels in blood and CNS in human prion disease. Mol Cell Neurosci 37(3):590–598

    Article  CAS  PubMed  Google Scholar 

  50. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    Article  CAS  PubMed  Google Scholar 

  51. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  CAS  PubMed  Google Scholar 

  52. Rath E, Haller D (2011) Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr 50(4):219–233

    Article  CAS  PubMed  Google Scholar 

  53. Aschner M, Vrana KE, Zheng W (1999) Manganese uptake and distribution in the central nervous system (CNS). Neurotoxicology 20(2–3):173–180

    CAS  PubMed  Google Scholar 

  54. Rama Rao KV, Reddy PV, Hazell AS, Norenberg MD (2007) Manganese induces cell swelling in cultured astrocytes. Neurotoxicology 28(4):807–812

    Article  CAS  PubMed  Google Scholar 

  55. Tiffany-Castiglion E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22(5):577–592

    Article  CAS  PubMed  Google Scholar 

  56. Tiffany-Castiglioni E, Hong S, Qian Y (2011) Copper handling by astrocytes: insights into neurodegenerative diseases. Int J Dev Neurosci 29(8):811–818

    Article  CAS  PubMed  Google Scholar 

  57. Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH (2005) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 25(4):823–829

    Article  CAS  PubMed  Google Scholar 

  58. Song H, Zheng G, Shen XF, Liu XQ, Luo WJ, Chen JY (2014) Reduction of brain barrier tight junctional proteins by lead exposure: role of activation of nonreceptor tyrosine kinase Src via chaperon GRP78. Toxicol Sci 138(2):393–402

    Article  CAS  PubMed  Google Scholar 

  59. Qian Y, Harris ED, Zheng Y, Tiffany-Castiglioni E (2000) Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol Appl Pharmacol 163(3):260–266

    Article  CAS  PubMed  Google Scholar 

  60. Qian Y, Falahatpisheh MH, Zheng Y, Ramos KS, Tiffany-Castiglioni E (2001) Induction of 78 kD glucose-regulated protein (GRP78) expression and redox-regulated transcription factor activity by lead and mercury in C6 rat glioma cells. Neurotox Res 3(6):581–589

    Article  CAS  PubMed  Google Scholar 

  61. Qian Y, Tiffany-Castiglioni E (2003) Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem Res 28(1):153–162

    Article  CAS  PubMed  Google Scholar 

  62. Qian Y, Zheng Y, Ramos KS, Tiffany-Castiglioni E (2005) GRP78 compartmentalized redistribution in Pb-treated glia: role of GRP78 in lead-induced oxidative stress. Neurotoxicology 26(2):267–275

    Article  CAS  PubMed  Google Scholar 

  63. Qian Y, Zheng Y, Weber D, Tiffany-Castiglioni E (2007) A 78-kDa glucose-regulated protein is involved in the decrease of interleukin-6 secretion by lead treatment from astrocytes. Am J Physiol Cell Physiol 293(3):C897–C905

    Article  CAS  PubMed  Google Scholar 

  64. Zhao B, Schwartz JP (1998) Involvement of cytokines in normal CNS development and neurological diseases: recent progress and perspectives. J Neurosci Res 52(1):7–16

    Article  CAS  PubMed  Google Scholar 

  65. Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18(2):121–129

    Article  PubMed  Google Scholar 

  66. Qian Y, Meng B, Zhang X, Zheng Y, Taylor R, Tiffany-Castiglioni E (2013) HSPA5 forms specific complexes with copper. Neurochem Res 38(2):321–329

    Article  CAS  PubMed  Google Scholar 

  67. Qian Y, Zheng Y, Taylor R, Tiffany-Castiglioni E (2012) Involvement of the molecular chaperone Hspa5 in copper homeostasis in astrocytes. Brain Res 1447:9–19

    Article  CAS  PubMed  Google Scholar 

  68. Hori O, Matsumoto M, Kuwabara K, Ueda H, Ohtsuki T, Kinoshita T, Ogawa S, Stern DM, Kamada T (1996) Exposure of astrocytes to hypoxia/reoxygenation enhances expression of glucose-regulated protein 78 facilitating astrocyte release of the neuroprotective cytokine interleukin 6. J Neurochem 66(3):973–979

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Tiffany-Castiglioni.

Additional information

Special Issue: In Honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, J.A., Tiffany-Castiglioni, E. The Chaperone Grp78 in Protein Folding Disorders of the Nervous System. Neurochem Res 40, 329–335 (2015). https://doi.org/10.1007/s11064-014-1405-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1405-0

Keywords

Navigation