Skip to main content

Advertisement

Log in

Dihydromyricetin Prevents Fetal Alcohol Exposure-Induced Behavioral and Physiological Deficits: The Roles of GABAA Receptors in Adolescence

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH’s many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH’s intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25–32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Riley EP, Infante MA, Warren KR (2011) Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev 21:73–80

    Article  PubMed Central  PubMed  Google Scholar 

  2. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, Hoyme HE (2009) Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev 15:176–192

    Article  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC) (2012) Alcohol use and binge drinking among women of childbearing age—United States, 2006–2010. Morb Mortal Wkly Rep 61:534–538

    Google Scholar 

  4. Day NL, Jasperse D, Richardson G, Robles N, Sambamoorthi U, Taylor P, Scher M, Stoffer D, Cornelius M (1989) Prenatal exposure to alcohol: effect on infant growth and morphologic characteristics. Pediatrics 84:536–541

    CAS  PubMed  Google Scholar 

  5. Floyd RL, Weber MK, Denny C, O’Connor MJ (2009) Prevention of fetal alcohol spectrum disorders. Dev Disabil Res Rev 15:193–199

    Article  PubMed  Google Scholar 

  6. Floyd RL, O’Connor MJ, Sokol RJ, Bertrand J, Cordero JF (2005) Recognition and prevention of fetal alcohol syndrome. Obstet Gynecol 106:1059–1064

    Article  PubMed  Google Scholar 

  7. Thomas JD, Riley EP (1998) Fetal alcohol syndrome: does alcohol withdrawal play a role? Alcohol Health Res World 22:47–53

    CAS  PubMed  Google Scholar 

  8. Shankar K, Ronis MJ, Badger TM (2007) Effects of pregnancy and nutritional status on alcohol metabolism. Alcohol Res Health 30:55–59

    PubMed Central  PubMed  Google Scholar 

  9. Nava-Ocampo AA, Velazquez-Armenta Y, Brien JF, Koren G (2004) Elimination kinetics of ethanol in pregnant women. Reprod Toxicol 18:613–617

    Article  CAS  PubMed  Google Scholar 

  10. Pikkarainen PH (1971) Metabolism of ethanol and acetaldehyde in perfused human fetal liver. Life Sci II 10:1359–1364

    Article  CAS  PubMed  Google Scholar 

  11. Brien JF, Loomis CW, Tranmer J, McGrath M (1983) Disposition of ethanol in human maternal venous blood and amniotic fluid. Am J Obstet Gynecol 146:181–186

    CAS  PubMed  Google Scholar 

  12. Koob GF (2004) A role for GABA mechanisms in the motivational effects of alcohol. Biochem Pharmacol 68:1515–1525

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL (2009) The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology 205:529–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ticku MK (1990) Alcohol and GABA-benzodiazepine receptor function. Ann Med 22:241–246

    Article  CAS  PubMed  Google Scholar 

  15. Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    Article  CAS  PubMed  Google Scholar 

  16. Olsen RW, Hanchar HJ, Meera P, Wallner M (2007) GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41:201–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Olsen RW, Sieghart W (2008) International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. SpigelmanI, Olsen RW, Liang J, Suryanarayanan A, Lindemeyer AK, Meyer EM, Shen Y, Bagnera R, Marty VN (2013) Molecular and functional changes in receptors: GABA and chronic alcohol consumption. In: Biological research on addiction: comprehensive addictive behaviors and disorders. Elsevier Inc., Academic Press, New York, 219–230

  19. Enoch MA (2008) The role of GABAA receptors in the development of alcoholism. Pharmacol Biochem Behav 90:95–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Frey GD (1990) γ-Aminobutyric acid changes in alcohol withdrawal. In: Porter RJ, Mattson RH, Cramer JA, Diamond I (eds) Alcohol and seizures: basic mechanisms and clinical concepts. FA Davis Company, Philadelphia, pp 87–101

  21. Olsen RW, Spigelman I (2012) GABAA receptor plasticity in alcohol withdrawal. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. Oxford University Press, New York, pp 562–573

  22. Fritschy J-M, Paysan J, Enna A, Mohler H (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci 14:5302–5324

    CAS  PubMed  Google Scholar 

  23. Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    CAS  PubMed  Google Scholar 

  24. Centers for Disease Control and Prevention (CDC) (2009) Alcohol use among pregnant and nonpregnant women of childbearing age—United States, 1991–2005. Morb Mortal Wkly Rep 58:529–532

    Google Scholar 

  25. National Institute on Alcohol Abuse and Alcoholism (2006) 5 Year strategic plan FY07-11. National Institute on Alcohol Abuse and Alcoholism

  26. Shen Y, Lindemeyer AK, Gonzalez C, Shao XM, Spigelman I, Olsen RW, Liang J (2012) Dihydromyricetin as a novel anti-alcohol intoxication medication. J Neurosci 32:390–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liang J, Suryanarayanan A, Abriam A, Snyder B, Olsen RW, Spigelman I (2007) Mechanisms of reversible GABAA receptor plasticity after ethanol intoxication. J Neurosci 27:12367–12377

    Article  CAS  PubMed  Google Scholar 

  28. Gulinello M, Smith SS (2003) Anxiogenic effects of neurosteroid exposure: sex differences and altered GABAA receptor pharmacology in adult rats. J Pharmacol Exp Ther 305:541–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Quirk GJ, Gehlert DR (2003) Inhibition of the amygdala: key to pathological states? Ann N Y Acad Sci 985:263–272

    Article  CAS  PubMed  Google Scholar 

  30. Sanders SK, Shekhar A (1995) Regulation of anxiety by GABAA receptors in the rat amygdala. Pharmacol Biochem Behav 52:701–706

    Article  CAS  PubMed  Google Scholar 

  31. Olsen RW, DeLorey TM, Gordey M, Kang MH (1999) GABA receptor function and epilepsy. Adv Neurol 79:499–510

    CAS  PubMed  Google Scholar 

  32. Coulter DA (2001) Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol 45:237–252

    Article  CAS  PubMed  Google Scholar 

  33. Sperk G, Furtinger S, Schwarzer C, Pirker S (2004) GABA and its receptors in epilepsy. Adv Exp Med Biol 548:92–103

    Article  CAS  PubMed  Google Scholar 

  34. Webb B, Burnett PW, Walker DW (2002) Sex differences in ethanol-induced hypnosis and hypothermia in young Long-Evans rats. Alcohol Clin Exp Res 26:695–704

    Article  PubMed  Google Scholar 

  35. Silveri MM, Spear LP (1998) Decreased sensitivity to the hypnotic effects of ethanol early in ontogeny. Alcohol Clin Exp Res 22:670–676

    Article  CAS  PubMed  Google Scholar 

  36. Kokka N, Sapp DW, Witte U, Olsen RW (1992) Sex differences in sensitivity to pentylenetetrazol but not in GABAA receptor binding. Pharmacol Biochem Behav 43:441–447

    Article  CAS  PubMed  Google Scholar 

  37. Olsen RW, Sieghart W (2008) International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Houston CM, He Q, Smart TG (2009) CaMKII phosphorylation of the GABAA receptor: receptor subtype- and synapse-specific modulation. J Physiol 587:2115–2125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Olsen RW, Sieghart W (2008) International union of pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Adkins CE, Pillai GV, Kerby J, Bonnert TP, Haldon C, McKernan RM, Gonzalez JE, Oades K, Whiting PJ, Simpson PB (2001) α4β3δ GABAA receptors characterized by fluorescence resonance energy transfer-derived measurements of membrane potential. J Biol Chem 276:38934–38939

    Article  CAS  PubMed  Google Scholar 

  41. Krogsgaard-Larsen P, Frolund B, Liljefors T, Ebert B (2004) GABAA agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 68:1573–1580

    Article  CAS  PubMed  Google Scholar 

  42. Liang J, Cagetti E, Olsen RW, Spigelman I (2004) Altered pharmacology of synaptic and extrasynaptic GABAA receptors on hippocampal CA1 pyramidal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J Pharmacol Exp Ther 310:1234–1245

    Article  CAS  PubMed  Google Scholar 

  43. Boehm SL, Homanics GE, Blednov YA, Harris RA (2006) δ-Subunit containing GABAA receptor knockout mice are less sensitive to the actions of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol. Eur J Pharmacol 541:158–162

    Article  CAS  PubMed  Google Scholar 

  44. Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen RW, Harrison NL, Homanics GE (2006) GABAA receptor α4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci USA 103:15230–15235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Meera P, Wallner M, Otis TS (2011) Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABAA receptors. J Neurophysiol 106:2057–2064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Testar X, Lopez D, Llobera M, Herrera E (1986) Ethanol administration in the drinking fluid to pregnant rats as a model for the fetal alcohol syndrome. Pharmacol Biochem Behav 24:625–630

    Article  CAS  PubMed  Google Scholar 

  47. Sherwin BT, Jacobson S, Troxell SL, Rogers AE, Pelham RW (1979) A rat model (using a semipurified diet) of the fetal alcohol syndrome. Curr Alcohol 7:15–30

    CAS  PubMed  Google Scholar 

  48. Vaglenova J, Petkov VV (1998) Fetal alcohol effects in rats exposed pre- and postnatally to a low dose of ethanol. Alcohol Clin Exp Res 22:697–703

    Article  CAS  PubMed  Google Scholar 

  49. Buts JP, Sokal EM, Van HF (1992) Prenatal exposure to ethanol in rats: effects on postnatal maturation of the small intestine and liver. Pediatr Res 32:574–579

    Article  CAS  PubMed  Google Scholar 

  50. Henderson GI, Schenker S (1977) The effect of maternal alcohol consumption on the viability and visceral development of the newborn rat. Res Commun Chem Pathol Pharmacol 16:15–32

    CAS  PubMed  Google Scholar 

  51. Lopez-Tejero D, Ferrer I, Llobera M, Herrera E (1986) Effects of prenatal ethanol exposure on physical growth, sensory reflex maturation and brain development in the rat. Neuropathol Appl Neurobiol 12:251–260

    Article  CAS  PubMed  Google Scholar 

  52. Windham GC, Von BJ, Fenster L, Schaefer C, Swan SH (1997) Moderate maternal alcohol consumption and risk of spontaneous abortion. Epidemiology 8:509–514

    Article  CAS  PubMed  Google Scholar 

  53. Kline J, Shrout P, Stein Z, Susser M, Warburton D (1980) Drinking during pregnancy and spontaneous abortion. Lancet 2:176–180

    Article  CAS  PubMed  Google Scholar 

  54. Kaufman MH, Bain IM (1984) Influence of ethanol on chromosome segregation during the first and second meiotic divisions in the mouse egg. J Exp Zool 230:315–320

    Article  CAS  PubMed  Google Scholar 

  55. Balaraman S, Tingling JD, Tsai PC, Miranda RC (2013) Dysregulation of microRNA expression and function contributes to the etiology of fetal alcohol spectrum disorders. Alcohol Res 35:18–24

    PubMed Central  PubMed  Google Scholar 

  56. Laufer BI, Mantha K, Kleiber ML, Diehl EJ, Addison SM, Singh SM (2013) Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice. Dis Model Mech 6:977–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Haycock PC, Ramsay M (2009) Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod 81:618–627

    Article  CAS  PubMed  Google Scholar 

  58. Zeisel SH (2011) What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders. Mol Neurobiol 44:185–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chiappelli F, Taylor AN (1995) The fetal alcohol syndrome and fetal alcohol effects on immune competence. Alcohol Alcohol 30:259–262

    CAS  PubMed  Google Scholar 

  60. Brocardo PS, Boehme F, Patten A, Cox A, Gil-Mohapel J, Christie BR (2012) Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: protective effects of voluntary physical exercise. Neuropharmacology 62:1607–1618

    Article  CAS  PubMed  Google Scholar 

  61. Conway S, Ling SY, Leidy JW Jr, Blaine K, Holtzman T (1997) Effect of fetal ethanol exposure on the in vitro release of growth hormone, somatostatin and growth hormone-releasing factor induced by clonidine and growth hormone feedback in male and female rats. Alcohol Clin Exp Res 21:826–839

    Article  CAS  PubMed  Google Scholar 

  62. Davis MI (2008) Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 118:36–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Moore DB, Madorsky I, Paiva M, Barrow HM (2004) Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: effects of prenatal exposure. J Neurobiol 60:101–113

    Article  CAS  PubMed  Google Scholar 

  64. Wilcoxon JS, Kuo AG, Disterhoft JF, Redei EE (2005) Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Mol Psychiatry 10:961–971

    Article  CAS  PubMed  Google Scholar 

  65. McGivern RF, Clancy AN, Hill MA, Noble EP (1984) Prenatal alcohol exposure alters adult expression of sexually dimorphic behavior in the rat. Science 224:896–898

    Article  CAS  PubMed  Google Scholar 

  66. Udani M, Parker S, Gavaler J, Van Thiel DH (1985) Effects of in utero exposure to alcohol upon male rats. Alcohol Clin Exp Res 9:355–359

    Article  CAS  PubMed  Google Scholar 

  67. Mankes RF, Glick SD (1986) Preferential alcoholic embryopathy among contiguous siblings of Long-Evans rats. Alcohol Clin Exp Res 10:388–392

    Article  CAS  PubMed  Google Scholar 

  68. Chen SH, Zhong GS, Li AL, Li SH, Wu LK (2006) Influence of Hovenia dulcis on alcohol concentration in blood and activity of alcohol dehydrogenase (ADH) of animals after drinking, Zhongguo Zhong. Yao Za Zhi 31:1094–1096

    Google Scholar 

  69. Kim MH, Chung YT, Lee JH, Park YS, Shin MK, Kim HS, Kim DH, Lee HY (2000) Hepatic detoxification activity and reduction of serum alcohol concentration of Hovenia dulcis Thunb from Korea and China. Korean J Med Crop Sci 8:225–233

    Google Scholar 

  70. Badger TM, Hidestrand M, Shankar K, McGuinn WD, Ronis MJ (2005) The effects of pregnancy on ethanol clearance. Life Sci 77:2111–2126

    Article  CAS  PubMed  Google Scholar 

  71. Bielawski DM, Abel EL (2002) The effect of administering ethanol as single vs. divided doses on blood alcohol levels in the rat. Neurotoxicol Teratol 24:559–562

    Article  CAS  PubMed  Google Scholar 

  72. Kelly SJ, Bonthius DJ, West JR (1987) Developmental changes in alcohol pharmacokinetics in rats. Alcohol Clin Exp Res 11:281–286

    Article  CAS  PubMed  Google Scholar 

  73. Kilb W, Kirischuk S, Luhmann HJ (2013) Role of tonic GABAergic currents during pre- and early postnatal rodent development, Front. Neural Circuits 7:1–13

    Google Scholar 

  74. Simeone TA, Donevan SD, Rho JM (2003) Molecular biology and ontogeny of gamma-aminobutyric acid (GABA) receptors in the mammalian central nervous system. J Child Neurol 18:39–48

    Article  PubMed  Google Scholar 

  75. Rudolph U, Mohler H (2014) GABA receptor subtypes: therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol 54:1–25

    Article  CAS  Google Scholar 

  76. Salazar P, Velasco-Velazquez MA, Velasco I (2008) GABA effects during neuronal differentiation of stem cells. Neurochem Res 33:1546–1557

    Article  CAS  PubMed  Google Scholar 

  77. Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development. Trends Neurosci 28:278–283

    Article  CAS  PubMed  Google Scholar 

  78. Paysan J, Fritschy JM (1998) GABAA-receptor subtypes in developing brain. Actors or spectators? Perspect Dev Neurobiol 5:179–192

    CAS  PubMed  Google Scholar 

  79. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    CAS  PubMed  Google Scholar 

  80. Osborn JA, Kim CK, Steiger J, Weinberg J (1998) Prenatal ethanol exposure differentially alters behavior in males and females on the elevated plus maze. Alcohol Clin Exp Res 22:685–696

    Article  CAS  PubMed  Google Scholar 

  81. Zhou R, Wang S, Zhu X (2010) Prenatal ethanol exposure attenuates GABAergic inhibition in basolateral amygdala leading to neuronal hyperexcitability and anxiety-like behavior of adult rat offspring. Neuroscience 170:749–757

    Article  CAS  PubMed  Google Scholar 

  82. Cullen CL, Burne TH, Lavidis NA, Moritz KM (2013) Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring. PLoS ONE 8:1–12

    Google Scholar 

  83. Carneiro LM, Diogenes JP, Vasconcelos SM, Aragao GF, Noronha EC, Gomes PB, Viana GS (2005) Behavioral and neurochemical effects on rat offspring after prenatal exposure to ethanol. Neurotoxicol Teratol 27:585–592

    Article  CAS  PubMed  Google Scholar 

  84. Hellemans KG, Sliwowska JH, Verma P, Weinberg J (2010) Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci Biobehav Rev 34:791–807

    CAS  PubMed  Google Scholar 

  85. Steinhausen HC, Willms J, Metzke CW, Spohr HL (2003) Behavioural phenotype in foetal alcohol syndrome and foetal alcohol effects. Dev Med Child Neurol 45:179–182

    Article  PubMed  Google Scholar 

  86. Bell SH, Stade B, Reynolds JN, Rasmussen C, Andrew G, Hwang PA, Carlen PL (2010) The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 34:1084–1089

    Article  PubMed  Google Scholar 

  87. Carlen PL, Davies MF, Rougier-Naquet I, Reynolds JN, Spigelman I (1990) Sedative drug withdrawal seizures: cellular electrophysiological mechanisms. In: Avoli M, Gloor P, Kostopoulos G, Naquet R (eds) Generalized epilepsy neurobiological approaches. Birkhauser, Boston, pp 460–470

    Chapter  Google Scholar 

  88. Kim CK, Kalynchuk LE, Kornecook TJ, Mumby DG, Dadgar NA, Pinel JP, Weinberg J (1997) Object-recognition and spatial learning and memory in rats prenatally exposed to ethanol. Behav Neurosci 111:985–995

    Article  CAS  PubMed  Google Scholar 

  89. Gabriel KI, Johnston S, Weinberg J (2002) Prenatal ethanol exposure and spatial navigation: effects of postnatal handling and aging. Dev Psychobiol 40:345–357

    Article  CAS  PubMed  Google Scholar 

  90. Thomas JD, La Fiette MH, Quinn VR, Riley EP (2000) Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol 22:703–711

    Article  CAS  PubMed  Google Scholar 

  91. Matthews DB, Simson PE (1998) Prenatal exposure to ethanol disrupts spatial memory: effect of the training-testing delay period. Physiol Behav 64:63–67

    Article  CAS  PubMed  Google Scholar 

  92. Zimmerberg B, Weston HE (2002) Postnatal stress of early weaning exacerbates behavioral outcome in prenatal alcohol-exposed juvenile rats. Pharmacol Biochem Behav 73:45–52

    Article  CAS  PubMed  Google Scholar 

  93. Neese S, La GL, Trujillo E, Romero D (2004) The effects of ethanol and silymarin treatment during gestation on spatial working memory, BMC complement. Altern Med 4:4

    Google Scholar 

  94. Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, Yoon SY, Bien-Ly N, Ring K, Zwilling D, Potter GB, Rubenstein JL, Kreitzer AC, Huang Y (2012) Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS ONE 7:e40555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC, Squire LR, Gage FH (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16:147–154

    Article  PubMed Central  PubMed  Google Scholar 

  96. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    Article  CAS  PubMed  Google Scholar 

  97. Jeltsch H, Bertrand F, Lazarus C, Cassel JC (2001) Cognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory tested. Neurobiol Learn Mem 76:81–105

    Article  CAS  PubMed  Google Scholar 

  98. Whissell PD, Rosenzweig S, Lecker I, Wang DS, Wojtowicz JM, Orser BA (2013) γ-Aminobutyric acid type A receptors that contain the δ subunit promote memory and neurogenesis in the dentate gyrus. Ann Neurol 74:611–621

    Article  CAS  PubMed  Google Scholar 

  99. Allan AM, Wu H, Paxton LL, Savage DD (1998) Prenatal ethanol exposure alters the modulation of the gamma-aminobutyric acidA1 receptor-gated chloride ion channel in adult rat offspring. J Pharmacol Exp Ther 284:250–257

    CAS  PubMed  Google Scholar 

  100. Iqbal U, Dringenberg HC, Brien JF, Reynolds JN (2004) Chronic prenatal ethanol exposure alters hippocampal GABAA receptors and impairs spatial learning in the guinea pig. Behav Brain Res 150:117–125

    Article  CAS  PubMed  Google Scholar 

  101. Toso L, Roberson R, Woodard J, Abebe D, Spong CY (2006) Prenatal alcohol exposure alters GABAA α5 expression: a mechanism of alcohol-induced learning dysfunction. Am J Obstet Gynecol 195:522–527

    Article  CAS  PubMed  Google Scholar 

  102. Diaz MR, Vollmer CC, Zamudio-Bulcock PA, Vollmer W, Blomquist S, Morton RA, Everett JC, Zurek AA, Yu J, Orser BA, Valenzuela CF (2014) Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABAA receptor δ subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology 79:262–274

    Article  CAS  PubMed  Google Scholar 

  103. Wang M (2011) Neurosteroids and GABA-A receptor function, front. Endocrinology (Lausanne) 2:44

    Google Scholar 

  104. Cook JB, Dumitru AM, O’Buckley TK, Morrow AL (2014) Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 38:90–99

    Article  CAS  PubMed  Google Scholar 

  105. Cook JB, Nelli SM, Neighbors MR, Morrow DH, O’Buckley TK, Maldonado-Devincci AM, Morrow AL (2014) Ethanol alters local cellular levels of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) independent of the adrenals in subcortical brain regions. Neuropsychopharmacology. doi:10.1038/npp.2014.46

  106. Morrow AL (2007) Recent developments in the significance and therapeutic relevance of neuroactive steroids–Introduction to the special issue. Pharmacol Ther 116:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Concas A, Follesa P, Barbaccia ML, Purdy RH, Biggio G (1999) Physiological modulation of GABAA receptor plasticity by progesterone metabolites. Eur J Pharmacol 375:225–235

    Article  CAS  PubMed  Google Scholar 

  108. Grobin AC, Morrow AL (2001) 3α-hydroxy-5α-pregnan-20-one levels and GABAA receptor-mediated 36Cl flux across development in rat cerebral cortex. Brain Res Dev Brain Res 131:31–39

    Article  CAS  PubMed  Google Scholar 

  109. Kellogg CK, Frye CA (1999) Endogenous levels of 5 alpha-reduced progestins and androgens in fetal vs. adult rat brains. Brain Res Dev Brain Res 115:17–24

    Article  CAS  PubMed  Google Scholar 

  110. Biggio F, Gorini G, Caria S, Murru L, Mostallino MC, Sanna E, Follesa P (2006) Plastic neuronal changes in GABAA receptor gene expression induced by progesterone metabolites: in vitro molecular and functional studies. Pharmacol Biochem Behav 84:545–554

    Article  CAS  PubMed  Google Scholar 

  111. Follesa P, Biggio F, Caria S, Gorini G, Biggio G (2004) Modulation of GABAA receptor gene expression by allopregnanolone and ethanol. Eur J Pharmacol 500:413–425

    Article  CAS  PubMed  Google Scholar 

  112. Yu R, Follesa P, Ticku MK (1996) Down-regulation of the GABA receptor subunits mRNA levels in mammalian cultured cortical neurons following chronic neurosteroid treatment. Brain Res Mol Brain Res 41:163–168

    Article  CAS  PubMed  Google Scholar 

  113. Yu R, Hay M, Ticku MK (1996) Chronic neurosteroid treatment attenuates single cell GABAA response and its potentiation by modulators in cortical neurons. Brain Res 706:160–162

    Article  CAS  PubMed  Google Scholar 

  114. Modol L, Casas C, Navarro X, Llido A, Vallee M, Pallares M, Darbra S (2014) Neonatal finasteride administration alters hippocampal α4 and δ GABAAR subunits expression and behavioural responses to progesterone in adult rats. Int J Neuropsychopharmacol 17:259–273

    Article  CAS  PubMed  Google Scholar 

  115. Caldeira JC, Wu Y, Mameli M, Purdy RH, Li PK, Akwa Y, Savage DD, Engen JR, Valenzuela CF (2004) Fetal alcohol exposure alters neurosteroid levels in the developing rat brain. J Neurochem 90:1530–1539

    Article  CAS  PubMed  Google Scholar 

  116. Zimmerberg B, McDonald BC (1996) Prenatal alcohol exposure influences the effects of neuroactive steroids on separation-induced ultrasonic vocalizations in rat pups. Pharmacol Biochem Behav 55:541–547

    Article  CAS  PubMed  Google Scholar 

  117. Costa ET, Olivera DS, Meyer DA, Ferreira VM, Soto EE, Frausto S, Savage DD, Browning MD, Valenzuela CF (2000) Fetal alcohol exposure alters neurosteroid modulation of hippocampal N-methyl-D-aspartate receptors. J Biol Chem 275:38268–38274

    Article  CAS  PubMed  Google Scholar 

  118. Liang J, Spigelman I, Olsen RW (2009) Tolerance to sedative/hypnotic actions of GABAergic drugs correlates with tolerance to potentiation of extrasynaptic tonic currents of alcohol-dependent rats. J Neurophysiol 102:224–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW, Spigelman I (2006) Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci 26:1749–1758

    Article  CAS  PubMed  Google Scholar 

  120. Pignataro L, Miller AN, Ma L, Midha S, Protiva P, Herrera DG, Harrison NL (2007) Alcohol regulates gene expression in neurons via activation of heat shock factor 1. J Neurosci 27:12957–12966

    Article  CAS  PubMed  Google Scholar 

  121. Werner DF, Kumar S, Criswell HE, Suryanarayanan A, Alex FJ, Comerford CE, Morrow AL (2011) PKCγ is required for ethanol-induced increases in GABAA receptor α4 subunit expression in cultured cerebral cortical neurons. J Neurochem 116:554–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–1172

    Article  CAS  PubMed  Google Scholar 

  123. Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, Russek SJ, Brooks-Kayal AR (2006) Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 26:11342–11346

    Article  CAS  PubMed  Google Scholar 

  124. Roberts DS, Raol YH, Bandyopadhyay S, Lund IV, Budreck EC, Passini MA, Wolfe JH, Brooks-Kayal AR, Russek SJ (2005) Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABAA receptor α4 subunit expression. Proc Natl Acad Sci USA 102:11894–11899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Castelhano AS, Cassane GS, Scorza FA, Cysneiros RM (2013) Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures. Front Behav Neurosci 7:1–8

    Article  Google Scholar 

  126. Duarte FS, Duzzioni M, Hoeller AA, Silva NM, Ern AL, Piermartiri TC, Tasca CI, Gavioli EC, Lemos T, Carobrez AP, De Lima TC (2013) Anxiogenic-like profile of Wistar adult rats based on the pilocarpine model: an animal model for trait anxiety? Psychopharmacology 227:209–219

    Article  CAS  PubMed  Google Scholar 

  127. Sayin U, Sutula TP, Stafstrom CE (2004) Seizures in the developing brain cause adverse long-term effects on spatial learning and anxiety. Epilepsia 45:1539–1548

    Article  PubMed  Google Scholar 

  128. Pineda E, Shin D, Sankar R, Mazarati AM (2010) Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia 51(Suppl 3):110–114

    Article  PubMed Central  PubMed  Google Scholar 

  129. Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM (2012) Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res 1458:18–33

    Article  CAS  PubMed  Google Scholar 

  130. Hellemans KG, Verma P, Yoon E, Yu W, Weinberg J (2008) Prenatal alcohol exposure increases vulnerability to stress and anxiety-like disorders in adulthood. Ann N Y Acad Sci 1144:154–175

    Article  CAS  PubMed  Google Scholar 

  131. Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnick P, Paul SM (1986) A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science 234:1243–1247

    Article  CAS  PubMed  Google Scholar 

  132. Wallner M, Hanchar HJ, Olsen RW (2006) Low-dose alcohol actions on α4β3δ GABAA receptors are reversed by the behavioral alcohol antagonist Ro15-4513. Proc Natl Acad Sci USA 103:8540–8545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Paul SM (2006) Alcohol-sensitive GABA receptors and alcohol antagonists. Proc Natl Acad Sci USA 103:8307–8308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Shen, Y., Shao, X.M. et al. Dihydromyricetin Prevents Fetal Alcohol Exposure-Induced Behavioral and Physiological Deficits: The Roles of GABAA Receptors in Adolescence. Neurochem Res 39, 1147–1161 (2014). https://doi.org/10.1007/s11064-014-1291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1291-5

Keywords

Navigation