Skip to main content

Advertisement

Log in

Rosiglitazone Suppresses Glioma Cell Growth and Cell Cycle by Blocking the Transforming Growth Factor-Beta Mediated Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glioma is one of the most malignant tumors in the central nervous system. As a peroxisome proliferator-activated receptor γ (PPAR-γ) activator, the thiazolidinediones (TZDs) induce growth arrest and cell death in a broad spectrum of tumor cells. In this study, we investigated the role of rosiglitazone in glioma cells. We found that rosiglitazone, a member of TZDs, suppresses growth of human glioma cell lines U87 and U251. Rosiglitazone also induces cell cycle arrest and apoptosis, which may be the mechanism of its anti-proliferation effect. Next, we found that rosiglitazone suppresses the expression of TGF-beta and its receptor TGF-betaR2, and suppresses phosphorylation of Smad3. Rosiglitazone also inhibits formation of the Smad3/Smad4 complex. Furthermore, Rosiglitazone affects the expression of Smad3/Smad4 associated regulators of gene expression, including p21 and c-Myc. These results suggest that rosiglitazone suppresses growth and cell cycle of human glioma cells by blocking the TGF-beta mediated pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kazumoto K (2001) Brain tumor. Nihon Rinsho 59(Suppl 7):257–266

    PubMed  Google Scholar 

  2. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108

    Article  PubMed  Google Scholar 

  3. Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185

    Article  PubMed  CAS  Google Scholar 

  4. Wick W, Naumann U, Weller M (2006) Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12:341–349

    Article  PubMed  CAS  Google Scholar 

  5. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massague J (1992) TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71:1003–1014

    Article  PubMed  CAS  Google Scholar 

  6. Henry RR (1997) Thiazolidinediones. Endocrinol Metab Clin North Am 26:553–573

    Article  PubMed  CAS  Google Scholar 

  7. Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45:1661–1669

    Article  PubMed  CAS  Google Scholar 

  8. Feinstein DL (2003) Therapeutic potential of peroxisome proliferator-activated receptor agonists for neurological disease. Diabetes Technol Ther 5:67–73

    Article  PubMed  CAS  Google Scholar 

  9. Na HK, Surh YJ (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands as bifunctional regulators of cell proliferation. Biochem Pharmacol 66:1381–1391

    Article  PubMed  CAS  Google Scholar 

  10. Kim JA, Park KS, Kim HI, Oh SY, Ahn Y, Oh JW, Choi KY (2002) Troglitazone activates p21Cip/WAF1 through the ERK pathway in HCT15 human colorectal cancer cells. Cancer Lett 179:185–195

    Article  PubMed  CAS  Google Scholar 

  11. Grommes C, Landreth GE, Heneka MT (2004) Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol 5:419–429

    Article  PubMed  CAS  Google Scholar 

  12. Posch MG, Zang C, Mueller W, Lass U, von Deimling A, Elstner E (2004) Somatic mutations in peroxisome proliferator-activated receptor-gamma are rare events in human cancer cells. Med Sci Monit 10:BR250-4

    Google Scholar 

  13. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP (1998) Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res 58:3344–3352

    PubMed  CAS  Google Scholar 

  14. Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, Kohno M, Inoue K, Hla T, Kondo M (2000) Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 270:400–405

    Article  PubMed  CAS  Google Scholar 

  15. Fujimura S, Suzumiya J, Nakamura K, Ono J (1998) Effects of troglitazone on the growth and differentiation of hematopoietic cell lines. Int J Oncol 13:1263–1267

    PubMed  CAS  Google Scholar 

  16. Hafner C, Reichle A, Vogt T (2005) New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy. Curr Cancer Drug Targets 5:393–419

    Article  PubMed  CAS  Google Scholar 

  17. Jan HJ, Lee CC, Lin YM, Lai JH, Wei HW, Lee HM (2009) Rosiglitazone reduces cell invasiveness by inducing MKP-1 in human U87 MG glioma cells. Cancer Lett 277:141–148

    Article  PubMed  CAS  Google Scholar 

  18. Tapia-Perez JH, Kirches E, Mawrin C, Firsching R, Schneider T (2011) Cytotoxic effect of different statins and thiazolidinediones on malignant glioma cells. Cancer Chemother Pharmacol 67:1193–1201

    Article  PubMed  CAS  Google Scholar 

  19. Seifer DB, MacLaughlin DT, Penzias AS, Behrman HR, Asmundson L, Donahoe PK, Haning RJ, Flynn SD (1993) Gonadotropin-releasing hormone agonist-induced differences in granulosa cell cycle kinetics are associated with alterations in follicular fluid mullerian-inhibiting substance and androgen content. J Clin Endocrinol Metab 76:711–714

    Article  PubMed  CAS  Google Scholar 

  20. Coras R, Holsken A, Seufert S, Hauke J, Eyupoglu IY, Reichel M, Trankle C, Siebzehnrubl FA, Buslei R, Blumcke I, Hahnen E (2007) The peroxisome proliferator-activated receptor-gamma agonist troglitazone inhibits transforming growth factor-beta-mediated glioma cell migration and brain invasion. Mol Cancer Ther 6:1745–1754

    Article  PubMed  CAS  Google Scholar 

  21. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549

    Article  PubMed  CAS  Google Scholar 

  22. Okura T, Nakamura M, Takata Y, Watanabe S, Kitami Y, Hiwada K (2000) Troglitazone induces apoptosis via the p53 and Gadd45 pathway in vascular smooth muscle cells. Eur J Pharmacol 407:227–235

    Article  PubMed  CAS  Google Scholar 

  23. Yin F, Bruemmer D, Blaschke F, Hsueh WA, Law RE, Herle AJ (2004) Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells. Oncogene 23:4614–4623

    Article  PubMed  CAS  Google Scholar 

  24. Qin C, Burghardt R, Smith R, Wormke M, Stewart J, Safe S (2003) Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells. Cancer Res 63:958–964

    PubMed  CAS  Google Scholar 

  25. Sugimura A, Kiriyama Y, Nochi H, Tsuchiya H, Tamoto K, Sakurada Y, Ui M, Tokumitsu Y (1999) Troglitazone suppresses cell growth of myeloid leukemia cell lines by induction of p21WAF1/CIP1 cyclin-dependent kinase inhibitor. Biochem Biophys Res Commun 261:833–837

    Article  PubMed  CAS  Google Scholar 

  26. Perez-Ortiz JM, Tranque P, Vaquero CF, Domingo B, Molina F, Calvo S, Jordan J, Cena V, Llopis J (2004) Glitazones differentially regulate primary astrocyte and glioma cell survival. Involvement of reactive oxygen species and peroxisome proliferator-activated receptor-gamma. J Biol Chem 279:8976–8985

    Article  PubMed  CAS  Google Scholar 

  27. Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, Landreth G, Koenigsknecht J, Heneka MT (2002) Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARgamma. J Neurochem 81:1052–1060

    Article  PubMed  CAS  Google Scholar 

  28. Grommes C, Landreth GE, Schlegel U, Heneka MT (2005) The nonthiazolidinedione tyrosine-based peroxisome proliferator-activated receptor gamma ligand GW7845 induces apoptosis and limits migration and invasion of rat and human glioma cells. J Pharmacol Exp Ther 313:806–813

    Article  PubMed  CAS  Google Scholar 

  29. Strakova N, Ehrmann J, Dzubak P, Bouchal J, Kolar Z (2004) The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines. J Pharmacol Exp Ther 309:1239–1247

    Article  PubMed  CAS  Google Scholar 

  30. Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, Schlegel U, Heneka MT (2006) Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 70:1524–1533

    Article  PubMed  CAS  Google Scholar 

  31. Cox PJ, Ryan DA, Hollis FJ, Harris AM, Miller AK, Vousden M, Cowley H (2000) Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione insulin sensitizer, in humans. Drug Metab Dispos 28:772–780

    PubMed  CAS  Google Scholar 

  32. Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, Sugiyama Y (2003) Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem 278:43489–43495

    Article  PubMed  CAS  Google Scholar 

  33. Tran TT et al (2007) Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol 9:259–270

    Article  PubMed  CAS  Google Scholar 

  34. Wick W, Grimmel C, Wild-Bode C, Platten M, Arpin M, Weller M (2001) Ezrin-dependent promotion of glioma cell clonogenicity, motility, and invasion mediated by BCL-2 and transforming growth factor-beta2. J Neurosci 21:3360–3368

    PubMed  CAS  Google Scholar 

  35. Merzak A, McCrea S, Koocheckpour S, Pilkington GJ (1994) Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1. Br J Cancer 70:199–203

    Article  PubMed  CAS  Google Scholar 

  36. Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, Mangadu R, Liu YW, Platten M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller M (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    Article  PubMed  CAS  Google Scholar 

  37. Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    Article  PubMed  CAS  Google Scholar 

  38. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang XF, Rich JN (2004) SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745

    PubMed  CAS  Google Scholar 

  39. Kawataki T, Naganuma H, Sasaki A, Yoshikawa H, Tasaka K, Nukui H (2000) Correlation of thrombospondin-1 and transforming growth factor-beta expression with malignancy of glioma. Neuropathology 20:161–169

    Article  PubMed  CAS  Google Scholar 

  40. Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjogren HO, Widegren B (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258

    Article  PubMed  CAS  Google Scholar 

  41. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K (1995) Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62:386–392

    Article  PubMed  CAS  Google Scholar 

  42. Demuth T, Rennert JL, Hoelzinger DB, Reavie LB, Nakada M, Beaudry C, Nakada S, Anderson EM, Henrichs AN, McDonough WS, Holz D, Joy A, Lin R, Pan KH, Lih CJ, Cohen SN, Berens ME (2008) Glioma cells on the run: the migratory transcriptome of 10 human glioma cell lines. BMC Genomics 9:54

    Article  PubMed  Google Scholar 

  43. Brown KA, Pietenpol JA, Moses HL (2007) A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 101:9–33

    Article  PubMed  CAS  Google Scholar 

  44. Soucek L, Evan GI (2010) The ups and downs of Myc biology. Curr Opin Genet Dev 20:91–95

    Article  PubMed  CAS  Google Scholar 

  45. Claassen GF, Hann SR (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proc Natl Acad Sci USA 97:9498–9503

    Article  PubMed  CAS  Google Scholar 

  46. Feng XH, Liang YY, Liang M, Zhai W, Lin X (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 9:133–143

    Article  PubMed  CAS  Google Scholar 

  47. Feng XH, Lin X, Derynck R (2000) Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 19:5178–5193

    Article  PubMed  CAS  Google Scholar 

  48. Moustakas A, Kardassis D (1998) Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc Natl Acad Sci USA 95:6733–6738

    Article  PubMed  CAS  Google Scholar 

  49. Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62

    PubMed  CAS  Google Scholar 

  50. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3:400–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from Tianjin Municipal Health Bureau (07KC79), Tianjin, China.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xishan Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Yu, J., Yin, Q. et al. Rosiglitazone Suppresses Glioma Cell Growth and Cell Cycle by Blocking the Transforming Growth Factor-Beta Mediated Pathway. Neurochem Res 37, 2076–2084 (2012). https://doi.org/10.1007/s11064-012-0828-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0828-8

Keywords

Navigation