Skip to main content

Advertisement

Log in

Astrocytes as GABA-ergic and GABA-ceptive Cells

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GABA (gamma-aminobutyric acid) is considered to be the major inhibitory neurotransmitter that is synthesized in and released from GABA-ergic neurons in the brain. However, recent studies have shown that not only neurons but astrocytes contain a considerable amount of GABA, which can be released and activate the receptors responsive to GABA. In addition, astrocytes are themselves responsive to GABA by expressing GABA receptors. These exciting new findings raise more questions about the origin of GABA, whether it is synthesized or taken up, and about the role of astrocytic GABA and GABA receptors. In this review, we propose several potential pathways for astrocytes to accumulate GABA and discuss the evidence for functional expression of GABA receptors in astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  2. Fiacco TA, McCarthy KD (2006) Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54:676–690

    Article  PubMed  Google Scholar 

  3. Rousse I, Robitaille R (2006) Calcium signaling in Schwann cells at synaptic and extra-synaptic sites: active glial modulation of neuronal activity. Glia 54:691–699

    Article  PubMed  Google Scholar 

  4. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  5. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  6. Oliet SH, Mothet JP (2006) Molecular determinants of d-serine-mediated gliotransmission: from release to function. Glia 54:726–737

    Article  PubMed  Google Scholar 

  7. Barakat L, Bordey A (2002) GAT-1 and reversible GABA transport in Bergmann glia in slices. J Neurophysiol 88:1407–1419

    PubMed  CAS  Google Scholar 

  8. Hussy N (2002) Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. Prog Brain Res 139:95–112

    Article  PubMed  CAS  Google Scholar 

  9. Jimenez-Gonzalez C, Pirttimaki T, Cope DW, Parri HR (2011) Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets delta-subunit-containing GABA (A) receptors. Eur J Neurosci 33:1471–1482

    Article  PubMed  Google Scholar 

  10. Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    Article  PubMed  CAS  Google Scholar 

  11. Yoon BE, Jo S, Woo J, Lee JH, Kim T, Kim D, Lee CJ (2011) The amount of astrocytic GABA positively correlates with the degree of tonic inhibition in hippocampal CA1 and cerebellum. Mol Brain 4:42

    Article  PubMed  CAS  Google Scholar 

  12. Lee M, McGeer EG, McGeer PL (2011) Mechanisms of GABA release from human astrocytes. Glia 59:1600–1611

    Article  PubMed  Google Scholar 

  13. Martin DL, Rimvall K (1993) Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem 60:395–407

    Article  PubMed  CAS  Google Scholar 

  14. Jakoby WB, Fredericks J (1959) Pyrrolidine and putrescine metabolism: gamma-aminobutyraldehyde dehydrogenase. J Biol Chem 234:2145–2150

    PubMed  CAS  Google Scholar 

  15. Lee M, Schwab C, Mcgeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59:152–165

    Article  PubMed  Google Scholar 

  16. Martin DL (1976) Carrier-mediated transport and removal of GABA from synaptic regions. In: Roberts E, Chase TN, Tower DR (eds) GABA in the central nervous system. Raven Press, New York, pp 347–386

    Google Scholar 

  17. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  PubMed  CAS  Google Scholar 

  18. Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  PubMed  CAS  Google Scholar 

  19. Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  PubMed  CAS  Google Scholar 

  20. Wilson SH, Schrier BK, Farber JL, Thompson EJ, Rosenberg RN, Blume AJ, Nirenberg MW (1972) Markers for gene expression in cultured cells from the nervous system. J Biol Chem 247:3159–3169

    PubMed  CAS  Google Scholar 

  21. Schrier BK, Thompson EJ (1974) On the role of glial cells in the mammalian nervous system. Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells. J Biol Chem 249:1769–1780

    PubMed  CAS  Google Scholar 

  22. Ochi S, Lim JY, Rand MN, During MJ, Sakatani K, Kocsis JD (1993) Transient presence of GABA in astrocytes of the developing optic nerve. Glia 9:188–198

    Article  PubMed  CAS  Google Scholar 

  23. De Mello FG, Bachrach U, Nirenberg M (1976) Ornithine and glutamic acid decarboxylase activities in the developing chick retina. J Neurochem 27:847–851

    Article  PubMed  Google Scholar 

  24. Seiler N, al-Therib MJ, Kataoka K (1973) Formation of GABA from putrescine in the brain of fish (Salmo irideus Gibb.). J Neurochem 20:699–708

    Article  PubMed  CAS  Google Scholar 

  25. Hokoc JN, Ventura AL, Gardino PF, De Mello FG (1990) Developmental immunoreactivity for GABA and GAD in the avian retina: possible alternative pathway for GABA synthesis. Brain Res 532:197–202

    Article  PubMed  CAS  Google Scholar 

  26. Barres BA, Koroshetz WJ, Swartz KJ, Chun LL, Corey DP (1990) Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4:507–524

    Article  PubMed  CAS  Google Scholar 

  27. Sequerra EB, Gardino P, Hedin-Pereira C, de Mello FG (2007) Putrescine as an important source of GABA in the postnatal rat subventricular zone. Neuroscience 146:489–493

    Article  PubMed  CAS  Google Scholar 

  28. Laschet J, Grisar T, Bureau M, Guillaume D (1992) Characteristics of putrescine uptake and subsequent GABA formation in primary cultured astrocytes from normal C57BL/6 J and epileptic DBA/2 J mouse brain cortices. Neuroscience 48:151–157

    Article  PubMed  CAS  Google Scholar 

  29. Wu PH, Durden DA, Hertz L (1979) Net production of gamma-aminobutyric acid in astrocytes in primary cultures determined by a sensitive mass spectrometric method. J Neurochem 32:379–390

    Article  PubMed  CAS  Google Scholar 

  30. Yeung JY, Canning KJ, Zhu G, Pennefather P, MacDonald JF, Orser BA (2003) Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol 63:2–8

    Article  PubMed  CAS  Google Scholar 

  31. Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    Article  PubMed  CAS  Google Scholar 

  32. Chiu CS, Brickley S, Jensen K, Southwell A, McKinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245

    Article  PubMed  CAS  Google Scholar 

  33. Wu Y, Wang W, Diez-Sampedro A, Richerson GB (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56:851–865

    Article  PubMed  CAS  Google Scholar 

  34. Hosli E, Mohler H, Richards JG, Hosli L (1980) Autoradiographic localization of binding sites for [3H]gamma-aminobutyrate, [3H]muscimol,(+)[3H]bicuculline methiodide and [3H] flunitrazepam in cultures of rat cerebellum and spinal cord. Neuroscience 5:1657–1665

    Article  PubMed  CAS  Google Scholar 

  35. Hosli L, Hosli E, Redle S, Rojas J, Schramek H (1990) Action of baclofen, GABA and antagonists on the membrane potential of cultured astrocytes of rat spinal cord. Neurosci Lett 117:307–312

    Article  PubMed  CAS  Google Scholar 

  36. Ossola L, DeFeudis FV, Mandel P (1980) Lack of Na”-independent binding of [3H]GABA or [3H]muscimol to particulate fractions of cultured astroblasts. J Neurochem 34:1026–1029

    Article  PubMed  CAS  Google Scholar 

  37. Fraser DD, Duffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, MacVicar BA (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15:2720–2732

    PubMed  CAS  Google Scholar 

  38. von Blankenfeld G, Kettenmann H (1991) Glutamate and GABA receptors in vertebrate glial cells. Mol Neurobiol 5:31–43

    Article  Google Scholar 

  39. Clark B, Mobbs P (1992) Transmitter-operated channels in rabbit retinal astrocytes studied in situ by whole-cell patch clamping. J Neurosci 12:664–673

    PubMed  CAS  Google Scholar 

  40. Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K + channel and GABAA receptor expression in Bergmann glial cells. J Neurosci 14:2503–2514

    PubMed  CAS  Google Scholar 

  41. Riquelme R, Miralles CP, De Blas AL (2002) Bergmann glia GABA (A) receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci 22:10720–10730

    PubMed  CAS  Google Scholar 

  42. Fraser DD, Mudrick-Donnon LA, MacVicar BA (1994) Astrocytic GABA receptors. Glia 11:83–93

    Article  PubMed  CAS  Google Scholar 

  43. Bovolin P, Santi MR, Puia G, Costa E, Grayson D (1992) Expression patterns of gamma-aminobutyric acid type A receptor subunit mRNAs in primary cultures of granule neurons and astrocytes from neonatal rat cerebella. Proc Natl Acad Sci USA 89:9344–9348

    Article  PubMed  CAS  Google Scholar 

  44. Hoppe D, Kettenmann H (1989) GABA triggers a Cl- efflux from cultured mouse olinodendrocvtes. Neurosci Lett 97:334–339

    Article  PubMed  CAS  Google Scholar 

  45. MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl-channels in astrocytes of hippocampal slices. J Neurosci 9:3577–3583

    PubMed  CAS  Google Scholar 

  46. Backus KH, Kettenmann H, Schachner M (1988) Effect of benzodiazepines and pentobarbital on the GABA-induced depolarization in cultured astrocytes. Glia 1:132–140

    Article  PubMed  CAS  Google Scholar 

  47. Kettenmann H, Schachner M (1985) Pharmacological properties of GABA, glutamate and aspartate induced depolarizations in cultured astrocytes. J Neurosci 5:3295–3301

    PubMed  CAS  Google Scholar 

  48. Matsutani S, Yamamoto N (1997) Neuronal regulation of astrocyte morphology in vitro is mediated by GABAergic signaling. Glia 20:1–9

    Article  PubMed  CAS  Google Scholar 

  49. Matsutani S, Yamamoto N (1998) GABAergic neuron-to-astrocyte signaling regulates dendritic branching in coculture. J Neurobiol 37:251–264

    Article  PubMed  CAS  Google Scholar 

  50. Bekar LK, Jabs R, Walz W (1999) GABAA receptor agonists modulate K+ currents in adult hippocampal glial cells in situ. Glia 26:129–138

    Article  PubMed  CAS  Google Scholar 

  51. Barres BA, Chun LL, Corey DP (1989) Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors. J Neurosci 9:3169–3175

    PubMed  CAS  Google Scholar 

  52. MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347

    Article  PubMed  CAS  Google Scholar 

  53. Nilsson M, Hansson E, Ronnback L (1992) Agonist evoked calcium transients in primary astroglia culture modulatory effects of valproic acid. Glia 5:201–209

    Article  PubMed  CAS  Google Scholar 

  54. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  55. Albrecht J, Pearce B, Murphy S (1986) Evidence for an interaction between GABA, and glutamate receptors in astrocytes as revealed by changes in Ca2+ flux. Eur J Pharmacol 125:463–464

    Article  PubMed  CAS  Google Scholar 

  56. Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24:214–223

    Article  PubMed  CAS  Google Scholar 

  57. Oka M, Wada M, Wu Q, Yamamoto A, Fujita T (2006) Functional expression of metabotropic GABAB receptors in primary cultures of astrocytes from rat cerebral cortex. Biochem Biophys Res Commun 341:874–881

    Article  PubMed  CAS  Google Scholar 

  58. Pearce B, Murphy S (1998) PNeurotransmitter receptors coupled to inositol phospholipid turnover and Ca2 + flux: consequences for astrocyte function. In: Kimelberg H (ed) Glial cell receptors. Raven Press, New York, pp 197–221

    Google Scholar 

  59. Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54:605–614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Justin Lee.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, BE., Woo, J. & Justin Lee, C. Astrocytes as GABA-ergic and GABA-ceptive Cells. Neurochem Res 37, 2474–2479 (2012). https://doi.org/10.1007/s11064-012-0808-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0808-z

Keywords

Navigation