Skip to main content

Advertisement

Log in

Exocytosis in Astrocytes: Transmitter Release and Membrane Signal Regulation

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes, a type of glial cells in the brain, are eukaryotic cells, and a hallmark of these are subcellular organelles, such as secretory vesicles. In neurons vesicles play a key role in signaling. Upon a stimulus—an increase in cytosolic concentration of free Ca2+ ([Ca2+]i)—the membrane of vesicle fuses with the presynaptic plasma membrane, allowing the exit of neurotransmitters into the extracellular space and their diffusion to the postsynaptic receptors. For decades it was thought that such vesicle-based mechanisms of gliotransmitter release were not present in astrocytes. However, in the last 30 years experimental evidence showed that astrocytes are endowed with mechanisms for vesicle- and non-vesicle-based gliotransmitter release mechanisms. The aim of this review is to focus on exocytosis, which may play a role in gliotransmission and also in other forms of cell-to-cell communication, such as the delivery of transporters, ion channels and antigen presenting molecules to the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parpura V, Verkhratsky A (2011) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int. doi:10.1016/j.neuint.2011.12.001

  2. Verkhratsky A et al (2011) Where the thoughts dwell: the physiology of neural-glial “diffuse neural net”. Brain Res Rev 66:133–155

    Article  PubMed  Google Scholar 

  3. Cornell-Bell AH et al (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  PubMed  CAS  Google Scholar 

  4. Dani JW et al (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  PubMed  CAS  Google Scholar 

  5. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    Article  PubMed  CAS  Google Scholar 

  6. Parpura V et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  7. Araque A et al (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  PubMed  CAS  Google Scholar 

  8. Domingues AM et al (2010) Glia as transmitter sources and sensors in health and disease. Neurochem Int 57:359–366

    Article  PubMed  CAS  Google Scholar 

  9. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  Google Scholar 

  10. Smith K (2010) Neuroscience: settling the great glia debate. Nature 468:160–162

    Article  PubMed  CAS  Google Scholar 

  11. Cooper GM (2000) The origin and evolution of cells. Sunderland, Massachusetts

    Google Scholar 

  12. Yoon HS et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

  13. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  PubMed  CAS  Google Scholar 

  14. Sabatini BL, Regehr WG (1999) Timing of synaptic transmission. Annu Rev Physiol 61:521–542

    Article  PubMed  CAS  Google Scholar 

  15. Vardjan N et al (2009) The fusion pore and vesicle cargo discharge modulation. Ann N Y Acad Sci 1152:135–144

    Article  PubMed  CAS  Google Scholar 

  16. Kreft M et al (2003) Properties of exocytotic response in vertebrate photoreceptors. J Neurophysiol 90:218–225

    Article  PubMed  CAS  Google Scholar 

  17. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    Article  PubMed  CAS  Google Scholar 

  18. Kreft M et al (2004) Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 46:437–445

    Article  PubMed  Google Scholar 

  19. Bollmann JH et al (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    Article  PubMed  CAS  Google Scholar 

  20. Heidelberger R et al (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371:513–515

    Article  PubMed  CAS  Google Scholar 

  21. Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  PubMed  CAS  Google Scholar 

  22. Young SM, Neher E (2009) Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63:482–496

    Article  PubMed  CAS  Google Scholar 

  23. Jean YY et al (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 4:35–42

    Article  PubMed  Google Scholar 

  24. Hua X et al (2004) Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res 76:86–97

    Article  PubMed  CAS  Google Scholar 

  25. MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347

    Article  PubMed  CAS  Google Scholar 

  26. Yaguchi T, Nishizaki T (2010) Extracellular high K+ stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels. J Cell Physiol 225:512–518

    Article  PubMed  CAS  Google Scholar 

  27. Akopian G et al (1996) Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+ currents. Glia 17:181–194

    Article  PubMed  CAS  Google Scholar 

  28. Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564:737–749

    Article  PubMed  CAS  Google Scholar 

  29. Malarkey EB et al (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835

    Article  PubMed  Google Scholar 

  30. Shigetomi E et al (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80

    Article  PubMed  CAS  Google Scholar 

  31. Lalo U et al (2011) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002

    Article  PubMed  CAS  Google Scholar 

  32. Minelli A et al (2007) Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41:221–234

    Article  PubMed  CAS  Google Scholar 

  33. Goldman WF et al (1994) Sodium/calcium exchange in rat cortical astrocytes. J Neurosci 14:5834–5843

    PubMed  CAS  Google Scholar 

  34. Axelrod J (1974) Neurotransmitters. Sci Am 230:59–71

    Article  PubMed  CAS  Google Scholar 

  35. Do KQ et al (1997) Beta-Adrenergic stimulation promotes homocysteic acid release from astrocyte cultures: evidence for a role of astrocytes in the modulation of synaptic transmission. J Neurochem 68:2386–2394

    Article  PubMed  CAS  Google Scholar 

  36. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  37. Martin ED et al (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55:36–45

    Article  PubMed  Google Scholar 

  38. Hertz L et al (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428

    Article  PubMed  CAS  Google Scholar 

  39. Westergaard N et al (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 17:160–168

    Article  PubMed  CAS  Google Scholar 

  40. Montana V et al (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    Article  PubMed  CAS  Google Scholar 

  41. Fremeau RT Jr et al (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493

    Article  PubMed  CAS  Google Scholar 

  42. Anlauf E, Derouiche A (2005) Astrocytic exocytosis vesicles and glutamate: a high-resolution immunofluorescence study. Glia 49:96–106

    Article  PubMed  Google Scholar 

  43. Zhang Q et al (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733

    Article  PubMed  CAS  Google Scholar 

  44. Bezzi P et al (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  PubMed  CAS  Google Scholar 

  45. Crippa D et al (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582

    Article  PubMed  CAS  Google Scholar 

  46. Wolosker H et al (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg D et al (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24:2951–2961

    Article  PubMed  CAS  Google Scholar 

  48. Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814:1558–1566

    Article  PubMed  CAS  Google Scholar 

  49. Kartvelishvily E et al (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem 281:14151–14162

    Article  PubMed  CAS  Google Scholar 

  50. Oliet SH, Mothet JP (2006) Molecular determinants of d-serine-mediated gliotransmission: from release to function. Glia 54:726–737

    Article  PubMed  Google Scholar 

  51. Henneberger C et al (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236

    Article  PubMed  CAS  Google Scholar 

  52. Vélez-Fort M et al (2011) Central role of GABA in neuron-glia interactions. Neuroscientist. doi:10.1177/1073858411403317

  53. Angulo MC et al (2008) GABA, a forgotten gliotransmitter. Prog Neurobiol 86:297–303

    Article  PubMed  CAS  Google Scholar 

  54. Lee S et al (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    Article  PubMed  CAS  Google Scholar 

  55. Echigo N, Moriyama Y (2004) Vesicular inhibitory amino acid transporter is expressed in gamma-aminobutyric acid (GABA)-containing astrocytes in rat pineal glands. Neurosci Lett 367:79–84

    Article  PubMed  CAS  Google Scholar 

  56. Unichenko P et al (2012) Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes. Glia 60:605–614

    Article  PubMed  Google Scholar 

  57. Araque A et al (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    PubMed  CAS  Google Scholar 

  58. Liu T et al (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31:10593–10601

    Article  PubMed  CAS  Google Scholar 

  59. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634

    Article  PubMed  CAS  Google Scholar 

  60. Jahn R, Scheller R (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  PubMed  CAS  Google Scholar 

  61. Stigliani S et al (2006) Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem 96:656–668

    Article  PubMed  CAS  Google Scholar 

  62. Montana V et al (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  63. Schubert V et al (2011) SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 59:1472–1488

    Article  PubMed  Google Scholar 

  64. Chen X et al (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25:9236–9243

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Q et al (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci USA 101:9441–9446

    Article  PubMed  CAS  Google Scholar 

  66. Maienschein V et al (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244

    Article  PubMed  CAS  Google Scholar 

  67. Stenovec M et al (2007) Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 313:3809–3818

    Article  PubMed  CAS  Google Scholar 

  68. Bergersen LH et al (2011) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex, Oxford

    Google Scholar 

  69. Xu J et al (2007) Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem 282:24185–24197

    Article  PubMed  CAS  Google Scholar 

  70. Kang N et al (2005) Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 94:4121–4130

    Article  PubMed  CAS  Google Scholar 

  71. Bergersen LH, Gundersen V (2009) Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 158:260–265

    Article  PubMed  CAS  Google Scholar 

  72. Krzan M et al (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583

    PubMed  CAS  Google Scholar 

  73. Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 104:4212–4217

    Article  PubMed  CAS  Google Scholar 

  74. Domercq M et al (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281:30684–30696

    Article  PubMed  CAS  Google Scholar 

  75. Marchaland J et al (2008) Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28:9122–9132

    Article  PubMed  CAS  Google Scholar 

  76. Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    Google Scholar 

  77. Pasti L et al (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484

    PubMed  CAS  Google Scholar 

  78. Schell MJ et al (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

    Article  PubMed  CAS  Google Scholar 

  79. Mothet JP et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci USA 102:5606–5611

    Article  PubMed  CAS  Google Scholar 

  80. Martineau M et al (2008) Confocal imaging and tracking of the exocytotic routes for d-serine-mediated gliotransmission. Glia 56:1271–1284

    Article  PubMed  Google Scholar 

  81. Dannies PS (1999) Protein hormone storage in secretory granules: mechanisms for concentration and sorting. Endocr Rev 20:3–21

    Article  PubMed  CAS  Google Scholar 

  82. Calegari F et al (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547

    Article  PubMed  CAS  Google Scholar 

  83. Ramamoorthy P, Whim MD (2008) Trafficking and fusion of neuropeptide y-containing dense-core granules in astrocytes. J Neurosci 28:13815–13827

    Article  PubMed  CAS  Google Scholar 

  84. McKenzie JC et al (2001) Atrial natriuretic peptide-like immunoreactivity in neurons and astrocytes of human cerebellum and inferior olivary complex. J Histochem Cytochem 49:1453–1467

    Article  PubMed  CAS  Google Scholar 

  85. Potter LR et al (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    Article  PubMed  CAS  Google Scholar 

  86. Skowrońska M et al (2010) Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem 115:1068–1076

    Article  PubMed  CAS  Google Scholar 

  87. Pangrsic T et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  PubMed  CAS  Google Scholar 

  88. Coco S et al (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    Article  PubMed  CAS  Google Scholar 

  89. Stenovec M et al (2004) Slow spontaneous secretion from single large dense-core vesicles monitored in neuroendocrine cells. FASEB J 18:1270–1272

    PubMed  CAS  Google Scholar 

  90. Baertschi AJ et al (2001) Acid prohormone sequence determines size, shape, and docking of secretory vesicles in atrial myocytes. Circ Res 89:E23–E29

    Article  PubMed  CAS  Google Scholar 

  91. Potokar M et al (2008) Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 56:135–144

    Article  PubMed  Google Scholar 

  92. Potokar M et al (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20

    Article  PubMed  CAS  Google Scholar 

  93. Potokar M et al (2005) Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 329:678–683

    Article  PubMed  CAS  Google Scholar 

  94. Potokar M et al (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58:1208–1219

    PubMed  Google Scholar 

  95. Potokar M et al (2011) Physiopathologic dynamics of vesicle traffic in astrocytes. Histol Histopathol 26:277–284

    PubMed  Google Scholar 

  96. Stenovec M et al (2011) Amyotrophic lateral sclerosis immunoglobulins G enhance the mobility of Lysotracker-labelled vesicles in cultured rat astrocytes. Acta Physiol (Oxf) 203:457–471

    Article  CAS  Google Scholar 

  97. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  98. Soos JM et al (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 161:5959–5966

    PubMed  CAS  Google Scholar 

  99. Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80:1–11

    Article  PubMed  CAS  Google Scholar 

  100. Stenovec M et al (2008) EAAT2 density at the astrocyte plasma membrane and Ca(2+)-regulated exocytosis. Mol Membr Biol 25:203–215

    Article  PubMed  CAS  Google Scholar 

  101. Bergami M et al (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183:213–221

    Article  PubMed  CAS  Google Scholar 

  102. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  103. Verkhratsky A et al (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    Article  PubMed  CAS  Google Scholar 

  104. Prado J et al (2010) Glial cells as sources and targets of natriuretic peptides. Neurochem Int 57:367–374

    Article  PubMed  CAS  Google Scholar 

  105. Sawada K et al (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA 105:5683–5686

    Article  PubMed  CAS  Google Scholar 

  106. Larsson M et al (2011) Functional and Anatomical Identification of a vesicular transporter mediating neuronal ATP release. Cereb Cortex, Oxford

    Google Scholar 

  107. Bal-Price A et al (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    Article  PubMed  Google Scholar 

  108. Abdipranoto A et al (2003) Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate. NeuroReport 14:2177–2181

    Article  PubMed  CAS  Google Scholar 

  109. Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca2+]i triggers delayed exocytosis of ATP in cultured astrocytes. Glia 56:38–49

    Article  PubMed  Google Scholar 

  110. Halassa MM et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219

    Article  PubMed  CAS  Google Scholar 

  111. Zhang Z et al (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    Article  PubMed  CAS  Google Scholar 

  112. Verderio C et al (2011) TI-VAMP/VAMP7 is the snare of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104:213–228

    Article  CAS  Google Scholar 

  113. Potokar M et al (2012) Rab4 and Rab5 GTPase are required for directional mobility of endocytic vesicles in astrocytes. Glia 60:594–604

    Article  PubMed  Google Scholar 

  114. Fontana A et al (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:273–276

    Article  PubMed  CAS  Google Scholar 

  115. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437

    Article  PubMed  CAS  Google Scholar 

  116. Junyent F et al (2011) Content and traffic of taurine in hippocampal reactive astrocytes. Hippocampus 21:185–197

    Article  PubMed  CAS  Google Scholar 

  117. Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24:6301–6306

    Article  PubMed  CAS  Google Scholar 

  118. Nakagawa T et al (2008) Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Eur J Neurosci 28:1719–1730

    Article  PubMed  Google Scholar 

  119. Leterrier C et al (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021

    Article  PubMed  CAS  Google Scholar 

  120. Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893

    Article  PubMed  CAS  Google Scholar 

  121. Bezzi P et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    Article  PubMed  CAS  Google Scholar 

  122. Osborne KD et al (2009) Dynamic imaging of cannabinoid receptor 1 vesicular trafficking in cultured astrocytes. ASN Neuro 1(5):art:e00022. doi:10.1042/AN20090040

  123. Calì C et al (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91

    Article  PubMed  CAS  Google Scholar 

  124. Calì C, Bezzi P (2010) CXCR4-mediated glutamate exocytosis from astrocytes. J Neuroimmunol 224:13–21

    Article  PubMed  CAS  Google Scholar 

  125. Stellwagen D et al (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228

    Article  PubMed  CAS  Google Scholar 

  126. Parpura V et al (2010) Regulated exocytosis in astrocytic signal integration. Neurochem Int 57:451–459

    Article  PubMed  CAS  Google Scholar 

  127. Pascual O (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  PubMed  CAS  Google Scholar 

  128. Cali C et al (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91

    Article  PubMed  CAS  Google Scholar 

  129. Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589:4271–4300

    PubMed  CAS  Google Scholar 

  130. Jorgacevski J et al (2010) Fusion pore stability of peptidergic vesicles. Mol Membr Biol 27:65–80

    Article  PubMed  CAS  Google Scholar 

  131. Jorgacevski J et al (2011) Munc18-1 tuning of vesicle merger and fusion pore properties. J Neurosci 31:9055–9066

    Article  PubMed  CAS  Google Scholar 

  132. Vardjan N et al (2007) Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 27:4737–4746

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants P3 310, J3 4051, J3 3632 and J3 4146 from the Slovenian Research Agency (ARRS), CipKeBip and the EduGlia ITN EU grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zorec.

Additional information

Special issue: In honor of Leif Hertz.

Alenka Guček, Nina Vardjan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guček, A., Vardjan, N. & Zorec, R. Exocytosis in Astrocytes: Transmitter Release and Membrane Signal Regulation. Neurochem Res 37, 2351–2363 (2012). https://doi.org/10.1007/s11064-012-0773-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0773-6

Keywords

Navigation