Skip to main content
Log in

Comparison of the Immunoreactivity of Trx2/Prx3 Redox System in the Hippocampal CA1 Region Between the Young and Adult Gerbil Induced by Transient Cerebral Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we compared the immunoreactivities and levels of Trx/prx redox system, thioredoxin 2 (Trx2), thioredoxin reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), as well as neuronal death in the hippocampal CA1 region between the adult and young gerbil after 5 min of transient cerebral ischemia. At 4 days post-ischemia, pyramidal neurons (about 90%) in the adult stratum pyramidale of the CA1 region showed “delayed neuronal death (DND)”; however, at this time point, few pyramidal neurons showed DND in the young stratum pyramidale. At 7 days post-ischemia, about 56% of pyramidal neurons showed DND in the young stratum pyramidale. The immunoreactivities of all the antioxidants in the young sham-group were similar to those in the adult sham-group. At 4 days post-ischemia, the immunoreactivity of TrxR2, not Trx2 and Prx3 in the adult ischemia-group was dramatically decreased in CA1 pyramidal neurons. At this time point, the immunoreactivities of all the antioxidants in the young ischemia-group were apparently increased compared to the adult ischemia-group. From 7 days pots-ischemia, non-pyramidal cells showed the immunoreactivities of all the antioxidants in the ischemic CA1 region; however, in the young ischemia-groups, the immunoreactivities were much lower than those in the adult ischemia-groups. In brief, our results showed that the immunoreactivities of Trx2, TrxR2 and Prx3 were dramatically increased in CA1 pyramidal neurons of the young ischemia-groups at 4 days post-ischemia compared to those in the adult ischemia-groups induced by transient cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  2. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  3. Ren J, Fan C, Chen N et al (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36:2352–2362

    Article  PubMed  CAS  Google Scholar 

  4. Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607

    Article  PubMed  CAS  Google Scholar 

  5. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  PubMed  CAS  Google Scholar 

  6. Numagami Y, Sato S, Ohnishi ST (1996) Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants. Neurochem Int 29:135–143

    Article  PubMed  CAS  Google Scholar 

  7. Yoon DK, Yoo KY, Hwang IK et al (2006) Comparative study on Cu, Zn-SOD immunoreactivity and protein levels in the adult and aged hippocampal CA1 region after ischemia-reperfusion. Brain Res 1092:214–219

    Article  PubMed  CAS  Google Scholar 

  8. Ahn JH, Choi JH, Song JM et al (2011) Increase in Trx2/Prx3 redox system immunoreactivity in the spinal cord and hippocampus of aged dogs. Exp Gerontol 46:946–952

    Article  PubMed  CAS  Google Scholar 

  9. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–27858

    Article  PubMed  CAS  Google Scholar 

  10. Chen X, Yan SD (2006) Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer’s disease. IUBMB Life 58:686–694

    Article  PubMed  CAS  Google Scholar 

  11. Kang SW, Rhee SG, Chang TS et al (2005) 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 11:571–578

    Article  PubMed  CAS  Google Scholar 

  12. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  CAS  Google Scholar 

  13. Delanty N, Dichter MA (2000) Antioxidant therapy in neurologic disease. Arch Neurol 57:1265–1270

    Article  PubMed  CAS  Google Scholar 

  14. Zhang H, Go YM, Jones DP (2007) Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch Biochem Biophys 465:119–126

    Article  PubMed  CAS  Google Scholar 

  15. Calabrese V, Cornelius C, Maiolino L et al (2010) Oxidative stress, redox homeostasis and cellular stress response in Meniere’s disease: role of vitagenes. Neurochem Res 35:2208–2217

    Article  PubMed  CAS  Google Scholar 

  16. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  PubMed  CAS  Google Scholar 

  18. Lin CS, Polsky K, Nadler JV et al (1990) Selective neocortical and thalamic cell death in the gerbil after transient ischemia. Neuroscience 35:289–299

    Article  PubMed  CAS  Google Scholar 

  19. Abe K, Aoki M, Kawagoe J et al (1995) Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke 26:1478–1489

    Article  PubMed  CAS  Google Scholar 

  20. Imon H, Mitani A, Andou Y et al (1991) Delayed neuronal death is induced without postischemic hyperexcitability: continuous multiple-unit recording from ischemic CA1 neurons. J Cereb Blood Flow Metab 11:819–823

    Article  PubMed  CAS  Google Scholar 

  21. Oguro K, Miyawaki T, Yokota H et al (2004) Upregulation of GluR2 decreases intracellular Ca2 + following ischemia in developing gerbils. Neurosci Lett 364:101–105

    Article  PubMed  CAS  Google Scholar 

  22. Tortosa A, Ferrer I (1994) Poor correlation between delayed neuronal death induced by transient forebrain ischemia, and immunoreactivity for parvalbumin and calbindin D-28 k in developing gerbil hippocampus. Acta Neuropathol 88:67–74

    Article  PubMed  CAS  Google Scholar 

  23. Yan BC, Park JH, Lee CH et al (2011) Increases of antioxidants are related to more delayed neuronal death in the hippocampal CA1 region of the young gerbil induced by transient cerebral ischemia. Brain Res 1425:142–154

    Article  PubMed  CAS  Google Scholar 

  24. Candelario-Jalil E, Alvarez D, Merino N et al (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  PubMed  CAS  Google Scholar 

  25. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  26. Loskota WJ, Lomax P, Verity MA (1974) A stereotaxic atlas of the Mongolian gerbil brain (Meriones unguiculatus). Ann Arbor Science, Ann Arbor, 157 pp

  27. Kusumoto M, Arai H, Mori K et al (1995) Resistance to cerebral ischemia in developing gerbils. J Cereb Blood Flow Metab 15:886–891

    Article  PubMed  CAS  Google Scholar 

  28. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138

    Article  PubMed  CAS  Google Scholar 

  29. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  30. Joosten EA, Houweling DA (2004) Local acute application of BDNF in the lesioned spinal cord anti-inflammatory and anti-oxidant effects. Neuroreport 15:1163–1166

    Article  PubMed  CAS  Google Scholar 

  31. Sivonova M, Kaplan P, Durackova Z et al (2008) Time course of peripheral oxidative stress as consequence of global ischaemic brain injury in rats. Cell Mol Neurobiol 28:431–441

    Article  PubMed  CAS  Google Scholar 

  32. Urikova A, Babusikova E, Dobrota D et al (2006) Impact of Ginkgo Biloba extract EGb 761 on ischemia/reperfusion—induced oxidative stress products formation in rat forebrain. Cell Mol Neurobiol 26:1343–1353

    Article  PubMed  CAS  Google Scholar 

  33. Leutner S, Eckert A, Muller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm 108:955–967

    Article  PubMed  CAS  Google Scholar 

  34. Hwang IK, Yoo KY, Kim DW et al (2010) Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 48:1242–1251

    Article  PubMed  CAS  Google Scholar 

  35. Wang L, Jiang DM (2009) Neuroprotective effect of Buyang Huanwu decoction on spinal ischemia/reperfusion injury in rats. J Ethnopharmacol 124:219–223

    Article  PubMed  Google Scholar 

  36. Stroev SA, Gluschenko TS, Tjulkova EI et al (2004) Preconditioning enhances the expression of mitochondrial antioxidant thioredoxin-2 in the forebrain of rats exposed to severe hypobaric hypoxia. J Neurosci Res 78:563–569

    Article  PubMed  CAS  Google Scholar 

  37. Aon-Bertolino ML, Romero JI, Galeano P et al (2011) Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system. Biochim Biophys Acta 1810:93–110

    Article  PubMed  CAS  Google Scholar 

  38. Kato S, Saeki Y, Aoki M et al (2004) Histological evidence of redox system breakdown caused by superoxide dismutase 1 (SOD1) aggregation is common to SOD1-mutated motor neurons in humans and animal models. Acta Neuropathol 107:149–158

    Article  PubMed  CAS  Google Scholar 

  39. Masutani H, Bai J, Kim YC et al (2004) Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection. Mol Neurobiol 29:229–242

    Article  PubMed  CAS  Google Scholar 

  40. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(Pt 1):1–8

    Article  PubMed  CAS  Google Scholar 

  41. Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313–325

    Article  CAS  Google Scholar 

  42. Hattori F, Murayama N, Noshita T et al (2003) Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J Neurochem 86:860–868

    Article  PubMed  CAS  Google Scholar 

  43. Seyfried J, Wullner U (2007) Inhibition of thioredoxin reductase induces apoptosis in neuronal cell lines: role of glutathione and the MKK4/JNK pathway. Biochem Biophys Res Commun 359:759–764

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka T, Hosoi F, Yamaguchi-Iwai Y et al (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 21:1695–1703

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee for his technical help in this study. This work was supported by Rural Development Administration of Agenda project (PJ008261), Korea, and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0007307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Il-Jun Kang or Moo-Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B.C., Park, J.H., Ahn, J.H. et al. Comparison of the Immunoreactivity of Trx2/Prx3 Redox System in the Hippocampal CA1 Region Between the Young and Adult Gerbil Induced by Transient Cerebral Ischemia. Neurochem Res 37, 1019–1030 (2012). https://doi.org/10.1007/s11064-012-0702-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0702-8

Keywords

Navigation