Skip to main content
Log in

Oxidative Modification of Cysteine 111 Promotes Disulfide Bond-Independent Aggregation of SOD1

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Converging evidence indicates that SOD1 aggregation is a common feature of mutant SOD1-linked fALS, and seems to be directly related to the gain-of-function toxic property. However, the mechanism inducing the aggregation is not understood. To study the contribution of oxidative modification of cysteine residues in SOD1 aggregation, we systematically examined the redox state of SOD1 cysteine residues in the G37R transgenic mouse model at different stages of the disease and under oxidative stress induced by H2O2. Our data suggest that under normal circumstance, cysteine 111 residue in SOD1 is free; however, under oxidative stress, it is prone to oxidative modification by providing the thiolate anion (S−). With the progression of the disease, increased levels of oxidative insults facilitated the oxidation of thiol groups of cysteine residues; human mutant SOD1 could generate an upper shift band in reducing SDS-PAGE, which turned out to be a Cys111-peroxidized SOD1 species. We also detected the formation of SOD1 multimers at different stages of the disease, and found that accumulated oxidative stress facilitated the formation of aggregates, which were not mediated by disulfide bond. This oxidative modification of cysteine 111 therefore promotes the formation of disulfide bond-independent aggregation of SOD1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  2. Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H et al (2004) A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 47:263–274

    Article  PubMed  CAS  Google Scholar 

  3. Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819

    Article  PubMed  CAS  Google Scholar 

  4. Andersen PM, Sims KB, Xin WW, Kiely R, O’Neill G et al (2003) Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 4:62–73

    Article  PubMed  CAS  Google Scholar 

  5. Cleveland DW (1999) From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron 24:515–520

    Article  PubMed  CAS  Google Scholar 

  6. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  PubMed  CAS  Google Scholar 

  7. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD et al (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  PubMed  CAS  Google Scholar 

  8. Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Natl Rev Mol Cell Biol 6:891–898

    Article  CAS  Google Scholar 

  9. Kabashi E, Valdmanis PN, Dion P, Rouleau GA (2007) Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol 62:553–559

    Article  PubMed  CAS  Google Scholar 

  10. Uchida K, Kawakishi S (1994) Identification of oxidized histidine generated at the active site of Cu, Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J Biol Chem 269:2405–2410

    PubMed  CAS  Google Scholar 

  11. Kurahashi T, Miyazaki A, Suwan S, Isobe M (2001) Extensive investigations on oxidized amino acid residues in H(2)O(2)-treated Cu, Zn-SOd protein with LC-ESI-Q-TOF-MS, MS/MS for the determination of the copper-binding site. J Am Chem Soc 123:9268–9278

    Article  PubMed  CAS  Google Scholar 

  12. Rakhit R, Crow JP, Lepock JR, Kondejewski LH, Cashman NR et al (2004) Monomeric Cu, Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 279:15499–15504

    Article  PubMed  CAS  Google Scholar 

  13. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF et al (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277:47551–47556

    Article  PubMed  CAS  Google Scholar 

  14. Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C et al (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 280:16295–16304

    Article  PubMed  CAS  Google Scholar 

  15. Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881

    Article  PubMed  CAS  Google Scholar 

  16. Ezzi SA, Urushitani M, Julien JP (2007) Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem 102:170–178

    Article  PubMed  Google Scholar 

  17. Di Noto L, Whitson LJ, Cao X, Hart PJ, Levine RL (2005) Proteasomal degradation of mutant superoxide dismutases linked to amyotrophic lateral sclerosis. J Biol Chem 280:39907–39913

    Article  PubMed  CAS  Google Scholar 

  18. Makmura L, Hamann M, Areopagita A, Furuta S, Munoz A et al (2001) Development of a sensitive assay to detect reversibly oxidized protein cysteine sulfhydryl groups. Antioxid Redox Signal 3:1105–1118

    Article  PubMed  CAS  Google Scholar 

  19. Zhang F, Strom AL, Fukada K, Lee S, Hayward LJ et al (2007) Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex. J Biol Chem 282:16691–16699

    Article  PubMed  CAS  Google Scholar 

  20. Parge HE, Hallewell RA, Tainer JA (1992) Atomic structures of wild-type and thermostable mutant recombinant human Cu, Zn superoxide dismutase. Proc Natl Acad Sci USA 89:6109–6113

    Article  PubMed  CAS  Google Scholar 

  21. Jacob C, Holme AL, Fry FH (2004) The sulfinic acid switch in proteins. Org Biomol Chem 2:1953–1956

    Article  PubMed  CAS  Google Scholar 

  22. Fujiwara N, Nakano M, Kato S, Yoshihara D, Ookawara T et al (2007) Oxidative modification to cysteine sulfonic acid of Cys111 in human copper-zinc superoxide dismutase. J Biol Chem 282:35933–35944

    Article  PubMed  CAS  Google Scholar 

  23. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F et al (2010) Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci 13:1396–1403

    Article  PubMed  CAS  Google Scholar 

  24. Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83:1030–1042

    Article  PubMed  CAS  Google Scholar 

  25. Oeda T, Shimohama S, Kitagawa N, Kohno R, Imura T et al (2001) Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet 10:2013–2023

    Article  PubMed  CAS  Google Scholar 

  26. Niwa J, Yamada S, Ishigaki S, Sone J, Takahashi M et al (2007) Disulfide bond mediates aggregation, toxicity, and ubiquitylation of familial amyotrophic lateral sclerosis-linked mutant SOD1. J Biol Chem 282:28087–28095

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa Y, Fu R, Deng HX, Siddique T, O’Halloran TV (2006) Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proc Natl Acad Sci USA 103:7148–7153

    Article  PubMed  CAS  Google Scholar 

  28. Cozzolino M, Amori I, Pesaresi MG, Ferri A, Nencini M et al (2008) Cysteine 111 affects aggregation and cytotoxicity of mutant Cu, Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J Biol Chem 283:866–874

    Article  PubMed  CAS  Google Scholar 

  29. Karch CM, Borchelt DR (2008) A limited role for disulfide cross-linking in the aggregation of mutant SOD1 linked to familial amyotrophic lateral sclerosis. J Biol Chem 283:13528–13537

    Article  PubMed  CAS  Google Scholar 

  30. Karch CM, Prudencio M, Winkler DD, Hart PJ, Borchelt DR (2009) Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci USA 106:7774–7779

    Article  PubMed  CAS  Google Scholar 

  31. Krishnan U, Son M, Rajendran B, Elliott JL (2006) Novel mutations that enhance or repress the aggregation potential of SOD1. Mol Cell Biochem 287:201–211

    Article  PubMed  CAS  Google Scholar 

  32. Son M, Puttaparthi K, Kawamata H, Rajendran B, Boyer PJ et al (2007) Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci USA 104:6072–6077

    Article  PubMed  CAS  Google Scholar 

  33. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG et al (2007) Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:12524–12529

    Article  PubMed  CAS  Google Scholar 

  34. Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A et al (2006) Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci USA 103:13860–13865

    Article  PubMed  CAS  Google Scholar 

  35. Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R et al (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci USA 103:7142–7147

    Article  PubMed  CAS  Google Scholar 

  36. Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Jaronen M, Arens E et al (2008) Deleterious role of superoxide dismutase in the mitochondrial intermembrane space. J Biol Chem 283:8446–8452

    Article  PubMed  CAS  Google Scholar 

  37. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 92:689–693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CIHR, the Muscular Dystrophy Association (MDA) USA and the National Natural Science Foundation of China (U0632007). X. Chen received a graduate studentship from the Manitoba Health Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Shang, H., Qiu, X. et al. Oxidative Modification of Cysteine 111 Promotes Disulfide Bond-Independent Aggregation of SOD1. Neurochem Res 37, 835–845 (2012). https://doi.org/10.1007/s11064-011-0679-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0679-8

Keywords

Navigation