Skip to main content
Log in

Association Between Na+,K+-ATPase Activity and the Vulnerability/Resilience to Mood Disorders induced by Early Life Experience

  • original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There is increasing evidence that early life events can influence neurodevelopment and later susceptibility to disease. Chronic variable stress (CVS) has been used as a model of depression. The objective of this study was to evaluate the interaction between early experience and vulnerability to chronic variable stress in adulthood, analyzing emotional, metabolic and neurochemical aspects related to depression. Pups were (1) handled (10 min/day) or (2) left undisturbed from day 1 to 10 after birth. When the animals reached adulthood, the groups were subdivided and the rats were submitted or not to CVS, which consisted of daily exposure to different stressors for 40 days, followed by a period of behavioral tasks, biochemical (plasma corticosterone and insulin sensitivity) and neurochemical (Na+,K+-ATPase activity in hippocampus, amygdala and parietal cortex) measurements. Neonatally-handled rats demonstrated shorter immobility times in the forced swimming test, independently of the stress condition. There was no difference concerning basal corticosterone or insulin sensitivity between the groups. Na+,K+-ATPase activity was decreased in hippocampus and increased in the amygdala of neonatally-handled rats. CVS decreased the enzyme activity in the three structures, mainly in the non-handled group. These findings suggest that early handling increases the ability to cope with chronic variable stress in adulthood, with animals showing less susceptibility to neurochemical features associated with depression, confirming the relevance of the precocious environment to vulnerability to psychiatric conditions in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barker DJP, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  PubMed  CAS  Google Scholar 

  2. Rich-Edwards JW, Stampfer MJ, Manson JE et al (1997) Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315:396–400

    PubMed  CAS  Google Scholar 

  3. Eriksson JG, Forsen T, Tuomilehto J et al (2001) Early growth and coronary heart disease in later life: longitudinal study. BMJ 322:949–953

    Article  PubMed  CAS  Google Scholar 

  4. Thompson C, Syddall H, Rodin I et al (2001) Birth weight and the risk of depressive disorder in late life. Br J Psychiatry 179:450–455

    Article  PubMed  CAS  Google Scholar 

  5. Gale CR, Martyn CN (2004) Birth weight and later risk of depression in a national birth cohort. Br J Psychiatry 184:28–33

    Article  PubMed  Google Scholar 

  6. Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151:U49–U62

    Article  PubMed  CAS  Google Scholar 

  7. Jones A, Godfrey KM, Wood P et al (2006) Fetal growth and the adrenocortical response to psychological stress. J Clin Endocrinol Metab 91:1868–1871

    Article  PubMed  CAS  Google Scholar 

  8. Liu D, Diorio J, Tannenbaum B et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    Article  PubMed  CAS  Google Scholar 

  9. Menard JL, Champagne DL, Meaney MJ (2004) Variations of maternal care differentially influence ‘fear’ reactivity and regional patterns of cFos immunoreactivity in response to the shock-probe burying test. Neuroscience 129:297–308

    Article  PubMed  CAS  Google Scholar 

  10. Zhang TY, Chretien P, Meaney MJ et al (2005) Influence of naturally occurring variations in maternal care on prepulse inhibition of acoustic startle and the medial prefrontal cortical dopamine response to stress in adult rats. J Neurosci 25:1493–1502

    Article  PubMed  CAS  Google Scholar 

  11. Rivarola MA, Suárez MM (2009) Early maternal separation and chronic variable stress in adulthood changes the neural activity and the expression of glucocorticoid receptor in limbic structures. Int J Dev Neurosci 27:567–574

    Article  PubMed  CAS  Google Scholar 

  12. McCauley J, Kern DE, Kolodner K et al (1997) Clinical characteristics of women with a history of childhood abuse: unhealed wounds. JAMA 277:1362–1368

    Article  PubMed  CAS  Google Scholar 

  13. Heim C, Newport DJ, Heit S et al (2000) Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284:592–597

    Article  PubMed  CAS  Google Scholar 

  14. Levine S, Haltmeyer GC, Karas GG et al (1967) Physiological and behavioral effects of infantile stimulation. Physiol Behav 2:55–59

    Article  CAS  Google Scholar 

  15. Branchi I, Santucci D, Alleva E (2001) Ultrasonic vocalisation emitted by infant rodents: a tool for assessment of neurobehavioural development. Behav Brain Res 125:49–56

    Article  PubMed  CAS  Google Scholar 

  16. Pryce CR, Bettschen D, Feldon J (2001) Comparison of the effects of early handling and early deprivation on maternal care in the rat. Dev Psychobiol 38:239–251

    Article  PubMed  CAS  Google Scholar 

  17. Meaney MJ, Aitken DH, Sharma S et al (1989) Postnatal handling increases hippocampal type II glucocorticoid receptors and enhances adrenocorticoid negative feedback efficacy in the rat. Neuroendocrinology 50:597–604

    Article  PubMed  CAS  Google Scholar 

  18. Panagiotaropoulos T, Papaioannou A, Pondiki S et al (2004) Effect of neonatal handling and sex on basal and chronic stress-induced corticosterone and leptin secretion. Neuroendocrinology 79:109–118

    Article  PubMed  CAS  Google Scholar 

  19. Ladd CO, Thrivikraman KV, Huot RL et al (2005) Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology 30:520–533

    Article  PubMed  CAS  Google Scholar 

  20. Porsolt RD, Anton G, Blavet N et al (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  21. Timonen M, Rajala U, Jokelainen J et al (2006) Depressive symptoms and insulin resistance in young adult males: results from the Northern Finland 1966 birth cohort. Mol Psychiatry 11:929–933

    Article  PubMed  CAS  Google Scholar 

  22. Wolff CT, Friedman SB, Hofer MA et al (1964) Relationship between psychological defenses and mean urinary 17-hydroxycorticosteroid excretion rates. i. a predictive study of parents of fatally ill children. Psychosom Med 26:576–591

    PubMed  CAS  Google Scholar 

  23. Samson JA, Mirin SM, Hauser ST et al (1992) Learned helplessness and urinary MHPG levels in unipolar depression. Am J Psychiatry 149:806–809

    PubMed  CAS  Google Scholar 

  24. Croes S, Merz P, Netter P (1993) Cortisol reaction in success and failure condition in endogenous depressed patients and controls. Psychoneuroendocrinology 18:23–35

    Article  PubMed  CAS  Google Scholar 

  25. Ilgen MA, Hutchison KE (2005) A history of major depressive disorder and the response to stress. J Affect Disord 86:143–150

    Article  PubMed  Google Scholar 

  26. Gamaro GD, Manoli LP, Torres IL et al (2003) Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 42:107–114

    Article  PubMed  CAS  Google Scholar 

  27. Goldstein I, Levy T, Galili D et al (2006) Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 60:491–499

    Article  PubMed  CAS  Google Scholar 

  28. Vasconcellos AP, Zugno AI, Dos Santos AH et al (2005) Na+, K(+)-ATPase activity is reduced in hippocampus of rats submitted to an experimental model of depression: effect of chronic lithium treatment and possible involvement in learning deficits. Neurobiol Learn Mem 84:102–110

    Article  PubMed  Google Scholar 

  29. Andrade S, Silveira SL, Gomez R et al (2007) Gender differences of acute and chronic administration of dehydroepiandrosterone in rats submitted to the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 31:613–621

    Article  PubMed  CAS  Google Scholar 

  30. Katz A, Nambi SS, Mather K et al (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410

    Article  PubMed  CAS  Google Scholar 

  31. Potenza MA, Marasciulo FL, Chieppa DM et al (2005) Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol 289:H813–H822

    Article  PubMed  CAS  Google Scholar 

  32. Jones DH, Matus AI (1974) Isolation of plasma synaptic membrane from brain by combination flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  PubMed  CAS  Google Scholar 

  33. Wyse ATS, Bolognesi G, Brusque AM et al (1995) Na+, K+-ATPase activity in the synaptic plasma membrane from the cerebral cortex of rats subjected to chemically induced phenylketonuria. Med Sci Res 23:261–262

    CAS  Google Scholar 

  34. Wyse ATS, Streck EL, Worm P et al (2000) Preconditioning prevents the inhibition of Na + , K + -ATPase activity after brain ischemia. Neurochem Res 25:969–973

    Google Scholar 

  35. Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+ + K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem J 22:301–307

    Google Scholar 

  36. Chan KM, Delfer D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  37. Lowry OH, Rosebrough AL, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-die-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  39. Downe NM, Heath RW (1970) Basic statistical methods. Harper & Row, New York

    Google Scholar 

  40. Papaioannou A, Gerozissis K, Prokopiou A et al (2002) Sex differences in the effects of neonatal handling on the animal’s response to stress and the vulnerability for depressive behaviour. Behav Brain Res 129:131–139

    Article  PubMed  CAS  Google Scholar 

  41. Costela C, Tejedor-Real P, Mico J et al (1995) Effect of neonatal handling on learned helplessness model of depression. Physiol Behav 57:407–410

    Article  PubMed  CAS  Google Scholar 

  42. Tejedor-Real P, Costela C, Gibert-Rahola J (1998) Neonatal handling reduces emotional reactivity and susceptibility to learned helplessness. Involvement of catecholaminergic systems. Life Sci 62:37–50

    Article  PubMed  CAS  Google Scholar 

  43. Todeschin AS, Winkelmann-Duarte EC, Jacob MH et al (2009) Effects of neonatal handling on social memory, social interaction, and number of oxytocin and vasopressin neurons in rats. Horm Behav 56:93–100

    Article  PubMed  CAS  Google Scholar 

  44. Donadio MV, Jacobs S, Corezola KL et al (2009) Neonatal handling reduces renal function in adult rats. Kidney Blood Press Res 32:286–292

    Article  PubMed  Google Scholar 

  45. Raineki C, De Souza MA, Szawka RE et al (2009) Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb. Neuroscience 159:31–38

    Article  PubMed  CAS  Google Scholar 

  46. Camozzato TS, Winkelmann-Duarte EC, Padilha CB et al (2009) Neonatal handling reduces the number of cells in the medial preoptic area of female rats. Brain Res 1247:92–99

    Article  PubMed  CAS  Google Scholar 

  47. Kuhn CM, Pauk J, Schanberg SM (1990) Endocrine responses to mother-infant separation in developing rats. Dev Psychobiol 23:395–410

    Article  PubMed  CAS  Google Scholar 

  48. Skilton MR, Moulin P, Terra JL et al (2007) Associations between anxiety, depression, and the metabolic syndrome. Biol Psychiatry 62:1251–1257

    Article  PubMed  CAS  Google Scholar 

  49. Weber-Hamann B, Kopf D, Lederbogen F et al (2005) Activity of the hypothalamus-pituitary-adrenal system and oral glucose tolerance in depressed patients. Neuroendocrinology 81:200–204

    Article  PubMed  CAS  Google Scholar 

  50. Fenoglio KA, Brunson KL, Avishai-Eliner S et al (2004) Region-specific onset of handling-induced changes in corticotropin-releasing factor and glucocorticoid receptor expression. Endocrinology 145:2702–2706

    Article  PubMed  CAS  Google Scholar 

  51. Whorwood CB, Ricketts ML, Stewart PM (1994) Regulation of sodium-potassium adenosine triphosphate subunit gene expression by corticosteroids and 11 beta-hydroxysteroid dehydrogenase activity. Endocrinology 135:901–910

    Article  PubMed  CAS  Google Scholar 

  52. Kaur J, Sharma D, Singh R (1998) Regional effects of ageing on Na+, K(+)-ATPase activity in rat brain and correlation with multiple unit action potentials and lipid peroxidation. Indian J Biochem Biophys 35:364–371

    PubMed  CAS  Google Scholar 

  53. Hokin-Neaverson M, Jefferson JW (1989) Erythrocytes sodium pump activity in bipolar affective disorder and other psychiatry disorders. Neuropsychobiology 22:1–7

    Article  PubMed  CAS  Google Scholar 

  54. Nurnberger J Jr, Jimerson DC, Allen JR et al (1982) Red cell ouabain-sensitive Na+-K+-adenosine triphosphatase: a state marker in affective disorder inversely related to plasma cortisol. Biol Psychiatry 17:981–992

    PubMed  CAS  Google Scholar 

  55. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  PubMed  CAS  Google Scholar 

  56. Liu XL, Miyakawa A, Aperia A et al (2007) Na, K-ATPase generates calcium oscillations in hippocampal astrocytes. Neuroreport 18:597–600

    Article  PubMed  Google Scholar 

  57. Kim SH, Yu HS, Park HG et al (2008) Dose-dependent effect of intracerebroventricular injection of ouabain on the phosphorylation of the MEK1/2-ERK1/2–p90RSK pathway in the rat brain related to locomotor activity. Prog Neuropsychopharmacol Biol Psychiatry 32:1637–1642

    Article  PubMed  CAS  Google Scholar 

  58. Kirshenbaum GS, Saltzman K, Rose B et al. (2011) Decreased neuronal Na(+), K(+) -ATPase activity in Atp1a3 heterozygous mice increases susceptibility to depression-like endophenotypes by chronic variable stress. Genes Brain Behav. doi: 10.1111/j.1601-183X.2011.00691.x

  59. Plotsky PM, Owens MJ, Nemeroff CB (1998) Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 21:293–307

    Article  PubMed  CAS  Google Scholar 

  60. Sallee FR, Nesbitt L, Dougherty D et al (1995) Lymphocyte glucocorticoid receptor: predictor of sertraline response in adolescent major depressive disorder (MDD). Psychopharmacol Bull 31:339–345

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Pelufo Silveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, P.P., Portella, A.K., da Silva Benetti, C. et al. Association Between Na+,K+-ATPase Activity and the Vulnerability/Resilience to Mood Disorders induced by Early Life Experience. Neurochem Res 36, 2075–2082 (2011). https://doi.org/10.1007/s11064-011-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0531-1

Keywords

Navigation