Skip to main content

Advertisement

Log in

The NMDA Receptor NR1 Subunit is Critically Involved in the Regulation of NMDA Receptor Activity by C-terminal Src kinase (Csk)

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous studies have shown that Csk plays critical roles in the regulation of neural development, differentiation and glutamate-mediated synaptic plasticity. It has been found that Csk associates with the NR2A and 2B subunits of N-methyl-D-aspartate receptors (NMDARs) in a Src activity-dependent manner and serves as an intrinsic mechanism to provide a “brake” on the induction of long-term synaptic potentiation (LTP) mediated by NMDARs. In contrast to the NR2A and 2B subunits, no apparent tyrosine phosphorylation is found in the NR1 subunit of NMDARs. Here, we report that Csk can also associate with the NR1 subunit in a Src activity-dependent manner. The truncation of the NR1 subunit C-tail which contains only one tyrosine (Y837) significantly reduced the Csk association with the NR1-1a/NR2A receptor complex. Furthermore, we found that either the truncation of NR2A C-tail at aa 857 or the mutation of Y837 in the NR1-1a subunit to phenylalanine blocked the inhibition of NR1-1a/NR2A receptors induced by intracellular application of Csk. Thus, both the NR1 and NR2 subunits are required for the regulation of NMDAR activity by Csk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nada S, Okada M, MacAuley A et al (1991) Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351:69–72

    Article  CAS  PubMed  Google Scholar 

  2. Ogawa A, Takayama Y, Sakai H et al (2002) Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem 277:14351–14354

    Article  CAS  PubMed  Google Scholar 

  3. Matsuoka H, Nada S, Okada M (2004) Mechanism of Csk-mediated down regulation of Src family tyrosine kinases in EGF signaling. J Biol Chem 279:5975–5983

    Article  CAS  PubMed  Google Scholar 

  4. Cole PA, Shen K, Qiao Y et al (2003) Protein tyrosine kinases Src and Csk: a tail’s tale. Curr Opin Chem Biol 7:580–585

    Article  CAS  PubMed  Google Scholar 

  5. Cohen P (2002) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  CAS  PubMed  Google Scholar 

  6. Liu XJ, Gingrich JR, Vargas-Caballero M et al (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med 14:1325–1332

    Article  CAS  PubMed  Google Scholar 

  7. Ingley E (2008) Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta 1784:56–65

    CAS  PubMed  Google Scholar 

  8. Imamoto A, Soriano P (1993) Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73:1117–1124

    Article  CAS  PubMed  Google Scholar 

  9. Nada S, Yagi T, Takeda H et al (1993) Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 73:1125–1135

    Article  CAS  PubMed  Google Scholar 

  10. Dey N, Howell BW, De PK et al (2005) CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity. Exp Cell Res 307:1–14

    Article  CAS  PubMed  Google Scholar 

  11. Colognato H, Ramachandrappa S, Olsen IM et al (2004) Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development. J Cell Biol 167:365–375

    Article  CAS  PubMed  Google Scholar 

  12. Nada S, Shima T, Yanai H et al (2003) Identification of PSD-93 as a substrate for the Src family tyrosine kinase Fyn. J Biol Chem 278:47610–47621

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Weerapura M, Ali MK et al (2008) Control of excitatory synaptic transmission by C-terminal Src kinase. J Biol Chem 283:17503–17514

    Article  CAS  PubMed  Google Scholar 

  14. Khanna S, Roy S, Park HA et al. (2007, Aug 10) Regulation of c-Src activity in glutamate-induced neurodegeneration. J Biol Chem 282:23482–23490

    Article  CAS  PubMed  Google Scholar 

  15. D’Arco M, Giniatullin R, Leone V et al. (2009, Aug 7) The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem 284:21393–21401

    Article  PubMed  Google Scholar 

  16. Rengifo-Cam W, Konishi A, Morishita N et al (2004) Csk defines the ability of integrin-mediated cell adhesion and migration in human colon cancer cells: implication for a potential role in cancer metastasis. Oncogene 23:289–297

    Article  CAS  PubMed  Google Scholar 

  17. Kawabuchi M, Satomi Y, Takao T et al (2000) Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404:999–1003

    Article  CAS  PubMed  Google Scholar 

  18. Shima T, Nada S, Okada M (2003) Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts. Proc Natl Acad Sci USA 100:14897–14902

    Article  CAS  PubMed  Google Scholar 

  19. Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  20. Cheung HH, Gurd JW (2001) Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases. J Neurochem 78:524–534

    Article  CAS  PubMed  Google Scholar 

  21. Nakazawa T, Komai S, Tezuka T et al (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRepsilon 2 (NR2B) subunit of the N-Methyl-D-aspartate receptor. J Biol Chem 276:693–699

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Leonard JP (2001) Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. J Neurochem 77:580–588

    Article  CAS  PubMed  Google Scholar 

  23. Monyer H, Sprengel R, Schoepfer R et al (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221

    Article  CAS  PubMed  Google Scholar 

  24. Karp SJ, Masu M, Eki T et al (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-Methyl-D-Aspartate receptor. J Biol Chem 268:3728–3733

    CAS  PubMed  Google Scholar 

  25. Lau LF, Huganir RL (1995) Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J Biol Chem 270:20036–20041

    Article  CAS  PubMed  Google Scholar 

  26. Vissel B, Krupp JJ, Heinemann SF et al (2001) A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 4:587–596

    Article  CAS  PubMed  Google Scholar 

  27. Polte TR, Hanks SK (1997) Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130(Cas)) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline-rich motifs. J Biol Chem 272:5501–5509

    Article  CAS  PubMed  Google Scholar 

  28. Lei G, Xue S, Chery N et al (2002) Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phopshatase alpha. EMBO J 21:2977–2989

    Article  CAS  PubMed  Google Scholar 

  29. Karni R, Mizrachi S, Reiss-Sklan E et al (2003) The pp60c-Src inhibitor PP1 is non-competitive against ATP. FEBS Lett 537:47–52

    Article  CAS  PubMed  Google Scholar 

  30. Bain J, McLauchlan H, Elliott M et al (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  CAS  PubMed  Google Scholar 

  31. Hsueh RC, Scheuermann RH (2000) Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol 75:283–316

    Article  CAS  PubMed  Google Scholar 

  32. Kalia LV, Gingrich JR, Salter MW (2004) Src in synaptic transmission and plasticity. Oncogene 23:8007–8016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from NIH (5R01 NS053567-04) to XMY. SF is supported by the State Scholarship Fund of China (2009845013). We also thank Dr. J. Olcese for his technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Min Yu.

Additional information

Xiao-Qian Fang and Jindong Xu contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, XQ., Xu, J., Feng, S. et al. The NMDA Receptor NR1 Subunit is Critically Involved in the Regulation of NMDA Receptor Activity by C-terminal Src kinase (Csk). Neurochem Res 36, 319–326 (2011). https://doi.org/10.1007/s11064-010-0330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0330-0

Keywords

Navigation