Skip to main content

Advertisement

Log in

Expression and Signaling of Formyl-Peptide Receptors in the Brain

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The human formyl-peptide receptor (FPR) and its variants FPRL1 and FPRL2 belong to the G-protein coupled seven transmembrane receptor (GPCR) family sensitive to pertussis toxin. FPR and FPRL1 were first detected in phagocytic leukocytes, and FPRL2 was found in monocytes and in dendritic cells. The three receptors were subsequently identified in other cell types or tissues, including neuronal cells and brain, where FPR and FPRL1 play a key role in angiogenesis, cell proliferation, protection against and cell death, as well as in neuroendocrine functions. Binding of different agonists to FPRs triggers several signaling pathways, activates NFkB and STAT3 transcriptional factors and induces the accumulation of the CDK inhibitors p21waf1/cip1, p16INK4 and p27kip1. Signaling molecules, such as ERKs, JNK, PKC, p38MAPK, PLC and PLD are involved in these intracellular cascades. In this article we briefly review FPRs expression and signaling in neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bao L, Gerard NP, Eddy RL Jr et al (1992) Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics 13:437–440

    Article  CAS  PubMed  Google Scholar 

  2. Murphy PM, Ozcelik T, Kennedy RT et al (1992) A structural homologous of the N-formyl-peptide receptor. Characterization and chromosomal mapping of a peptide chemoattractant receptor family. J Biol Chem 267:7637–7643

    CAS  PubMed  Google Scholar 

  3. Ye RD, Cavanagh SL, Quehenberger O et al (1992) Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Comm 184:582–589

    Article  CAS  PubMed  Google Scholar 

  4. Becker EL, Forouhar FA, Grunnet ML et al (1998) Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues and cells. Cell Tissue Res 292:129–135

    Article  CAS  PubMed  Google Scholar 

  5. McCoy R, Haviland DL, Molmenti EP et al (1995) N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. J Exp Med 182:207–217

    Article  CAS  PubMed  Google Scholar 

  6. Rescher U, Danielczyk A, Markoff A et al (2002) Functional activation of the formyl peptide receptor by a new endogenous ligand in human lung A549 cells. J Immunol 169:1500–1504

    CAS  PubMed  Google Scholar 

  7. Le Y, Hu J, Gong W et al (2000) Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol 111:102–108

    Article  CAS  PubMed  Google Scholar 

  8. Sozzani S, Sallusto F, Luini W et al (1995) Migration of dendritic cells in response to formylpeptides, C5a, and a distinct set of chemokines. J Immunol 155:3292–3295

    CAS  PubMed  Google Scholar 

  9. Le Y, Gong W, Tiffany HL et al. (2001) Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 21, RC123:1–5

    Google Scholar 

  10. Le Y, Yazawa H, Gong W et al (2001) The neurotoxic prion peptide fragment Prp(106–126) is a chemotactic agonist for the G protein-coupled receptor formyl-peptide receptor-like1. J Immunol 166:1448–1451

    CAS  PubMed  Google Scholar 

  11. Ying G, Iribarren P, Zhou Y et al (2004) Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like 1 as a functional receptor. J Immunol 172:7078–7085

    CAS  PubMed  Google Scholar 

  12. John CD, Sahni V, Mehet D et al (2007) Formyl peptide receptors and the regulation of ACTH secretion: targets for annexin A1, lipoxins, and bacterial peptides. FASEB J 21:1037–1046

    Article  CAS  PubMed  Google Scholar 

  13. Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, non fibrillar ligands derived from Abeta 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  CAS  PubMed  Google Scholar 

  14. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 6:15–24

    Google Scholar 

  15. Decker Y, McBean G, Godson C (2009) Lipoxin A4 inhibits IL-1beta-induced IL-8 and ICAM-1 expression in 1321N1 human astrocytoma cells. Am J Physiol Cell Physiol. 296:C1420–C1427

    Article  CAS  PubMed  Google Scholar 

  16. Ali H, Richardson RM, Tomhave ED et al (1993) Differences in phosphorylation of formylpeptide and C5a chemoattractant receptors correlated with differences in desensitization. J Biol Chem 268:24247–24254

    CAS  PubMed  Google Scholar 

  17. Tardif M, Mery L, Brouchon L et al (1993) Agonist-dependent phosphorylation of N-formylpeptide and activation peptide from the fifth component of C (C5a) chemoattractant receptors in HL60 cells. J Immunol 150:3534–3545

    CAS  PubMed  Google Scholar 

  18. Prossnitz ER (1997) Desentization of N-formyl peptide receptor-mediate activation. J Biol Chem 272:15213–15219

    Article  CAS  PubMed  Google Scholar 

  19. Hsu MH, Chiang SC, Rd Ye et al (1997) Phosphorylation of the N-formyl peptide receptor is required for receptor internalization but not chemotaxis. J Biol Chem 272:29426–29429

    Article  CAS  PubMed  Google Scholar 

  20. Bennett TA, Maestas DC, Prossnitz ER (2000) Arrestin binding to G protein-coupled N-formyl peptide receptor is regulated by the conserved “DRY” sequence. J Biol Chem 32:24590–24594

    Article  Google Scholar 

  21. McMahon B, Stenson C, McPhillips F et al (2000) Lipoxin antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells. Differential activation of MAP kinases through distinct receptors. J Biol Chem 275:27566–27575

    CAS  PubMed  Google Scholar 

  22. Mc Mahon B, Mitchell D, Shattock R et al. (2002), Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 10.1096/fj.02-0416fje

  23. Wu SH, Wu XH, Lu C et al (2006) Lipoxin A4 inhibits proliferation of human lung fibroblasts induced by connective tissue growth factor. Am J Respir Cell Mol Biol 34:65–72

    Article  CAS  PubMed  Google Scholar 

  24. Wu SH, Lu C, Dong L et al (2005) Lipoxin A4 inhibits TNF-alpha-induced production of interleukins and proliferation of rat mesangial cells. Kideny Int 68:35–46

    Article  CAS  Google Scholar 

  25. Mitchel D, Rodgers K, Hanly J et al (2004) Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. Am J Pathol 164:937–946

    Google Scholar 

  26. Wada K, Arita M, Nakajima A et al (2006) Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J 20:1785–1792

    Article  CAS  PubMed  Google Scholar 

  27. Perez HD, Holmes R, Kelly E et al (1992) Cloning of the gene coding for the human receptor for formyl-peptides. Characterization of a promoter region and evidence for polymorphic expression. Biochemistry 31:11595–11599

    Article  CAS  PubMed  Google Scholar 

  28. Durstin M, Gao JL, Tiffany HL et al (1994) Differential expression of members of the N-formylpeptide receptor gene-cluster in human phagocytes. Biochem Biophys Res Commun 201:174–179

    Article  CAS  PubMed  Google Scholar 

  29. Hartt JK, Barish G, Murphy PM et al (1999) N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, a second mouse neutrophil FPR. J Exp Med 190:741–747

    Article  CAS  PubMed  Google Scholar 

  30. Takano T, Fiore S, Maddox JF et al (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med 185:1693–1704

    Article  CAS  PubMed  Google Scholar 

  31. Fiore S, Maddox JF, Perez HD et al (1994) Identification of a human cDNA- encoding a functional high-affinity lipoxin A(4) receptor. J Exp Med 180:253–260

    Article  CAS  PubMed  Google Scholar 

  32. Le Y, Oppenheim JJ, Wang JM (2001) Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev 12:91–105

    Article  CAS  PubMed  Google Scholar 

  33. Bae YS, Kim Y, Kim Y et al (1999) Trp-Lys-Tyr-Met-Val-D- Met is a chemoattractant for human phagocytic cells. J Leukoc Biol 66:915–922

    CAS  PubMed  Google Scholar 

  34. Ammendola R, Russo L, De Felice C et al (2004) Low- affinity receptor-mediated induction of superoxide by N-formyl-methionyl-leucyl-phenylalanine and WKYMVm in IMR90 human fibroblasts. Free Rad Biol Med 36:189–200

    Article  CAS  PubMed  Google Scholar 

  35. Iaccio A, Collinet C, Montesano Gesualdi N et al (2007) Protein kinase C-α and–δ are required for NADPH oxidase activation in WKYMVm-stimulated IMR90 fibroblasts. Arch Biochem Biophys 459:288–294

    Article  CAS  PubMed  Google Scholar 

  36. Karlsson J, Stenfeldt AL, Rabiet MJ et al (2009) The FPR2-specific ligand MMK-1 activates the neutrophil NADPH-oxidase, but triggers no unique pathway for opening of plasma membrane calcium channels. Cell Calcium 45:431–438

    Article  CAS  PubMed  Google Scholar 

  37. Hu JY, Le Y, Gong W et al (2001) Synthetic peptide MMK-1 is a highly specific chemotactic agonist for leukocyte FPRL1. Leukc Biol 70:155–161

    CAS  Google Scholar 

  38. Walther A, Riehmann K, Gerke V et al (2000) A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell 5:831–840

    Article  CAS  PubMed  Google Scholar 

  39. Su SB, Gon W, Gao JL et al (1999) A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic. J Exp Med 189:395–402

    Article  CAS  PubMed  Google Scholar 

  40. De Y, Chen Q, Schmidt AP et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  Google Scholar 

  41. Iaccio A, Cattaneo F, Mauro M et al (2009) FPRL1-mediated induction of superoxide in LL-37-stimulated IMR90 human fibroblast. Arch Biochem Biophys 481:94–100

    Article  CAS  PubMed  Google Scholar 

  42. Gierschik P, Sidoropoulos D, Jakobs KH et al (1989) Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem 264:21470–21473

    CAS  PubMed  Google Scholar 

  43. Wentel-Seifert K, Arthur JM, Liu HY et al (1999) Quantitative analysis of formyl peptide receptor coupling to g(i)alpha(1), g(i)alpha(2), and g(i)alpha(3). J Biol Chem 264:21470–21473

    Google Scholar 

  44. Tsu RC, Lai HWL, Allen RA et al (1995) Differential coupling of the formyl peptide receptor to adenylate cyclase and phospholipase C by the pertussis toxin-insensitive Gz protein. Biochem J 309:331–339

    CAS  PubMed  Google Scholar 

  45. Iaccio A, Angiolillo A, Ammendola R (2008) Intracellular signaling triggered by formyl-peptide receptors in nonphagocytic cells. Curr Sign Transd Ther 3:88–96

    Article  CAS  Google Scholar 

  46. Partida-Sanchez S, Cockaine DA, Monard S et al (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216

    Article  CAS  PubMed  Google Scholar 

  47. Liberles SD, Horowitz LF, Kuang D et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA 106:9842–9847

    Article  CAS  PubMed  Google Scholar 

  48. Rivière S, Challet L, Fluegge D et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    Article  PubMed  Google Scholar 

  49. Gavins FN, Dalli J, Flower RJ et al (2007) Activation of annexin1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J 21:1751–1758

    Article  CAS  PubMed  Google Scholar 

  50. Tiffany HL, Lavigne MC, Cui YH et al (2001) Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem 276:23645–23652

    Article  CAS  PubMed  Google Scholar 

  51. Brandenburg LO, Konrad M, Wruck C et al (2008) Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1–42 in glial cells. Neuroscience 156:266–276

    Article  CAS  PubMed  Google Scholar 

  52. Brandenburg LO, Konrad M, Wruck CJ et al (2010) Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1–42-induced signal transduction in glial cells. J Neurochem 113:749–760

    Article  CAS  PubMed  Google Scholar 

  53. Chen K, Iribarren P, Huang J et al (2007) Induction of the formyl peptide receptor 2 in microglia by IFN-gamma and synergy with CD40 ligand. J Immunol 178:1759–1766

    CAS  PubMed  Google Scholar 

  54. Heurtaux T, Michelucci A, Losciuto S et al (2010) Microglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2. J Neurochem 114:576–586

    CAS  PubMed  Google Scholar 

  55. Hashimoto Y, Niikura T, Tajima H et al (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s diseases genes and Aβ42. Proc Natl Acad Sci USA 98:6336–6341

    Article  CAS  PubMed  Google Scholar 

  56. Brandenburg LO, Koch T, Sievers J et al (2007) Internalization of PrP106–126 by the formyl-peptide-receptor-like-1 in glial cells. J Neurochem 101:718–728

    Article  CAS  PubMed  Google Scholar 

  57. Kam AY, Tse TT, Kwan DH et al (2007) Formyl peptide receptor like 1 differentially requires mitogen-activated protein kinase for the induction of glial fibrillare acidic protein and interleukin-1alpha in human U87 astrocytoma cells. Cell Signal 19:2106–2117

    Article  CAS  PubMed  Google Scholar 

  58. Kam AY, Liu AM, Wong YH et al (2007) Formyl peptide-receptor like-1 requires lipid raft and extracellular signal-regulated protein kinase to activate inhibitor-kappa B kinase in human U87 astrocytoma cells. J Neurochem 103:1533–1566

    Article  Google Scholar 

  59. Chen JH, Yao XH, Gong W et al (2007) A novel lipoxygenase inhibitor Nordy attenuates malignant human glioma cell response to chemotactic and growth stimulating factors. J Neurooncol 84:223–231

    Article  CAS  PubMed  Google Scholar 

  60. John CD, Gavins FN, Buss N et al (2008) Annexin-1 and the formyl peptide receptor family: neuroendocrine and metabolic aspects. Curr Opin Pharmacol 8:765–776

    Article  CAS  PubMed  Google Scholar 

  61. Andric SA, Zivadinovic D, Gonzales-Iglesias AE et al (2005) Endothelin-induced, long lasting, and Ca++ influx-independent blockade of intrinsic secretion in pituitary cells by Gz subunits. J Biol Chem 280:26896–26903

    Article  CAS  PubMed  Google Scholar 

  62. Hashimoto Y, Suzuki H, Aiso S et al (2005) Involvement of tyrosine kinase and STAT3 in humanin-mediated neuroprotection. Life Sci 77:3092–3104

    Article  CAS  PubMed  Google Scholar 

  63. Zhou Y, Bian X, Le Y et al (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 97:823–835

    Article  CAS  PubMed  Google Scholar 

  64. Huang J, Hu J, Bian X et al (2007) Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res 67:5906–5913

    Article  CAS  PubMed  Google Scholar 

  65. Huang J, Chen K, Chen J et al (2010) The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. Br J Cancer 102:1052–1060

    Article  CAS  PubMed  Google Scholar 

  66. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  67. Russo T, Zambrano N, Esposito F et al (1995) A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem 271:4138–4142

    Google Scholar 

  68. Ammendola R, Ruocchio MR, Chirico G et al (2002) Inibition of NADH/NADPH oxidase affects signal transduction by growth factor receptors in normal fibroblasts. Arch Biochem Biophys 397:253–257

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y, Chan MMK, Andrews MC et al (2005) Apocynin but not allopurinol prevents and reverses adrenocorticotropic hormone-induced hypertension in the rat. Am J Hypertens 18:910–916

    Article  CAS  PubMed  Google Scholar 

  70. Barbieri SS, Cavalca V, Eligini S et al (2004) Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Rad Biol Med 37:156–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are greatful to the eminent scientist Prof. Abel Lajtha for being founder and Editor in Chief of Neurochemical Research, now in its 34th year. This work was supported by grants from Ministero dell’Università e della Ricerca Scientifica e Tecnologica PRIN 2007 “Attivazione dei recettori per formil-peptidi e regolazione della NADPH ossidasi in linee cellulari tumorali umane non fagocitiche”. We thank Jean Ann Gilder (Scientific Communication srl) for text editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Ammendola.

Additional information

Special issue article in honor of Prof. Abel Lajtha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, F., Guerra, G. & Ammendola, R. Expression and Signaling of Formyl-Peptide Receptors in the Brain. Neurochem Res 35, 2018–2026 (2010). https://doi.org/10.1007/s11064-010-0301-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0301-5

Keywords

Navigation