Skip to main content
Log in

Antioxidant-Like Effects and Protective Action of Transcranial Magnetic Stimulation in Depression Caused by Olfactory Bulbectomy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We studied the effects of transcranial magnetic stimulation (TMS, 60 Hz and 0.7 mT for 4 h/day for 14 days) on oxidative and cell damage caused by olfactory bulbectomy (OBX) in Wistar rats. The levels of lipid peroxidation products and caspase-3 were enhanced by OBX, whereas it prompted a reduction in reduced glutathione (GSH) content and antioxidative enzymes activities. The treatment with TMS reverted towards normality the biomarkers indicative of oxidative stress and apoptosis. In conclusion, our data show that TMS induced a protection against cell and oxidative damage induced by OBX, as well as they support the hypothesis that oxidative stress may play an important role in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Murray CJ, López AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504

    Article  CAS  PubMed  Google Scholar 

  2. Akiskal HS (2005) Searching for behavioural indicators of bipolar II in patients presenting with major depressive episodes: the “red sign”, the “rule of three” and other biographic signs of temperamental extravagance, activation and hypomania. J Affect Disord 84:279–290

    Article  PubMed  Google Scholar 

  3. Freitas C, Fregni F, Pascual-Leone A (2009) Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res 208:11–24

    Article  Google Scholar 

  4. Nitsche MA, Boggio PS, Fregni F et al (2009) Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol 219:14–19

    Article  PubMed  Google Scholar 

  5. Arias-Carrión O, Verdugo-Díaz L, Deria-Velasco A et al (2004) Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res 78:16–28

    Article  PubMed  Google Scholar 

  6. Johnston MV (2009) Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev 15:94–101

    Article  PubMed  Google Scholar 

  7. Ng F, Berk M, Dean O et al (2008) Oxidative stress in psychiatric disorders: evidence and therapeutic implications. Int J Neurophsychopharmacol 11:851–876

    CAS  Google Scholar 

  8. Tsaluchidu S, Cocchi M, Tonillo L et al (2008) Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 8:S5

    Article  PubMed  Google Scholar 

  9. Rezin GT, Amboni G, Zugno AI et al (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029

    Article  CAS  PubMed  Google Scholar 

  10. López-Ibor JJ, López-Ibor MI, Pastrana JI (2008) Transcranial magnetic stimulation. Curr Opin Psychiatry 21:640–644

    Article  PubMed  Google Scholar 

  11. Machado S, Bittencourt J, Minc D et al (2008) Therapeutic applications of repetitive transcranial magnetic stimulation in clinical neurorehabilitation. Funct Neurol 23:113–122

    PubMed  Google Scholar 

  12. Mathew SJ (2008) Treatment-resistant depression: recent developments and future directions. Depress Anxiety 25:989–992

    Article  PubMed  Google Scholar 

  13. Pallanti S, Bernardi S (2009) Neurobiology of repeated transcranial magnetic stimulation in the treatment of anxiety: a critical review. Int Clin Psychopharmacol 24:163–173

    Article  PubMed  Google Scholar 

  14. Zwanzger P, Fallgatter AJ, Zavorotnyy M et al (2009) Anxiolytic effects of transcranial magnetic stimulation—an alternative treatment option in anxiety disorders? J Neural Transm 116:767–775

    Article  PubMed  Google Scholar 

  15. Túnez I, Medina FJ, Jimena I et al (2007) Effect of fluoxetine on brain oxidative stress, neuronal damage and behavioural induced in the olfactory bulbectomy model of depression. Lett Drug Des Discov 4:305–310

    Article  Google Scholar 

  16. Tasset I, Peña J, Feijóo M et al (2008) Effect of 17-beta estradiol on olfactory bulbectomy-induced oxidative stress and behavioral changes in rats. Neuropsychiatr Dis Treat 4:441–449

    CAS  PubMed  Google Scholar 

  17. Túnez I, Drucker-Colín R, Jimena I et al (2006) Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. J Neurochem 97:619–630

    Article  PubMed  Google Scholar 

  18. Túnez I, Montilla P, Muñoz MC et al (2006) Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci Res 56:91–95

    Article  PubMed  Google Scholar 

  19. Vieyra-Reyes P, Mineur YS, Picciotto MR et al (2008) Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res Bull 77:13–18

    Article  CAS  PubMed  Google Scholar 

  20. Drucker-Colin R, Verdugo-Díaz L, Méndez M et al (1994) Comparison between low frequency magnetic field stimulation and nerve growth factor treatment of cultured chromaffin cells, on neurite growth, noradrenalina release, excitable proporties, and grafting in nigrostriatal lesioned rats. Mol Cell Neurosci 5:485–498

    Article  CAS  PubMed  Google Scholar 

  21. Feria-Velasco A, Castillo-Medina S, Verdugo-Díaz L et al (1998) Neuronal differentiation of chromaffin cells in vitro, induced by extremely low frequency magnetic fields or nerve growth factor: a histological and ultrastructural comparative study. J Neurosci Res 53:569–582

    Article  CAS  PubMed  Google Scholar 

  22. Arias-Carrión O (2008) Basic mechanisms of rTMS: implications in Parkinson’s disease. Int Arch Med 1:2

    Article  PubMed  Google Scholar 

  23. Flohé L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid sensitive method for quantification of microgram quantities utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Seth R, Jennings AL, Bindman J et al (1992) Combination treatment with noradrenalin and serotonin reuptake inhibitors in resistant depression. Br J Psychiatry 161:562–565

    Article  CAS  PubMed  Google Scholar 

  26. Galecki P, Szemraj J, Bienkiewicz M et al (2009) Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 24:277–286

    Article  CAS  PubMed  Google Scholar 

  27. Kim do H, Li H, Yoo KY et al (2007) Effects of fluoxetine on ischemis cells and expressions in BDNF and some antioxidants in the gerbil hippocampal CA1 region induced by transient ischemia. Exp Neurol 204:748–758

    Article  PubMed  Google Scholar 

  28. Khanzode SD, Dakhale GN, Khanzode SS et al (2003) Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 8:365–370

    Article  CAS  PubMed  Google Scholar 

  29. Zafir A, Banu N (2007) Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 572:23–31

    Article  CAS  PubMed  Google Scholar 

  30. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  31. Dryzga LR, Marcinowska A, Obuchowicz E (2009) Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull 79:248–257

    Article  Google Scholar 

  32. Maes M, Mihaylova I, Kubera M et al (2010) Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease. J Affect Disord. Doi: 10.1016/j.had.2009.12.014

  33. Michel TM, Camara S, Tatschner T et al (2010) Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 11:314–320

    Article  PubMed  Google Scholar 

  34. Song C, Leonard BE (2005) The olfactory bulbectomized rats as a model of depression. Neurosci Biobehav Rev 29:627–647

    Article  PubMed  Google Scholar 

  35. Kodydková J, Vaávrová L, Zeman M et al (2009) Antioxidative enzymes and increased oxidative stress in depressive woman. Clin Biochem 42:1368–1374

    Article  PubMed  Google Scholar 

  36. Bilici M, Efe H, Köroglu MA et al (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64:43–51

    Article  CAS  PubMed  Google Scholar 

  37. Sarandol A, Sarandol E, Eker SS et al (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22:67–73

    Article  CAS  PubMed  Google Scholar 

  38. Selek S, Savas HA, Gergerlioglu HS et al (2008) The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 107:89–94

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Z, Wang W, Guo H et al (2008) Antidepressant-like of liguiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav Brain Res 194:108–113

    Article  CAS  PubMed  Google Scholar 

  40. Tasset I, Medina FJ, Peña J et al (2010) Olfactory bulbectomy induced oxidative and cell damage in rat: protective effect of melatonin. Physiol Res 59:105–112

    CAS  PubMed  Google Scholar 

  41. Robinson AM, Conley DB, Kern RC (2003) Olfactory neurons in bax knockout mice are protected from bulbectomy-induced apoptosis. Neuroreport 14:1891–1894

    Article  PubMed  Google Scholar 

  42. Szuster-Ciesielsk A, Slotwinska M, Stachura A et al (2008) Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 32:686–694

    Article  Google Scholar 

  43. Gangadar NM, Firestein SJ, Stockwell BR (2008) A novel role for jun-N-terminal kinase signalling in olfactory sensory neuronal death. Mol Cell Neurosci 38:518–525

    Article  Google Scholar 

  44. Borders AS, Getchell ML, Etscheidt JT et al (2007) Macrophage depletion in the murine olfactory epithelium leads to increased neuronal death and decreased neurogenesis. J Comp Neurol 501:206–218

    Article  CAS  PubMed  Google Scholar 

  45. Ihara Y, Takata H, Tanabe Y et al (2005) Influence of repetitive transcranial magnetic stimulation on disease severity and oxidative stress markers in the cerebrospinal fluid of patients with spinocerebellar degeneration. Neurol Res 27:310–313

    Article  PubMed  Google Scholar 

  46. Gao F, Wang S, Guo Y et al (2010) Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischemia: a microPET study. Eur J Nucl Med Mol Imaging 37:954–961

    Article  PubMed  Google Scholar 

  47. Ji RR, Schlaepfer TE, Aizenman CD et al (1998) Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci USA 95:15635–15640

    Article  CAS  PubMed  Google Scholar 

  48. Olivares-Bañuelos T, Navarro L, González A et al (2004) Differentiation of chromaffin cells elicited by ELF-MF modifies gene expresión pattern. Cell Biol Int 28:273–279

    Article  PubMed  Google Scholar 

  49. Fountoulaki KN, Grunze H, Panagiotidis P et al (2009) Treatment of bipolar depression: an update. J Affect Disord 109:21–34

    Article  Google Scholar 

  50. Jeon WJ, Kim SH, Seo MS et al (2008) Repeated electroconvulsive seizure induces c-Myc down-regulation and Bad inactivation in the rat frontal cortex. Exp Mol Med 31:435–444

    Article  Google Scholar 

  51. Jornada LK, Feier G, Barichello T et al (2007) Effects of maintenance electroshock damage parameters in the rat brain. Neurochem Res 32:389–394

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Túnez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasset, I., Drucker-Colín, R., Peña, J. et al. Antioxidant-Like Effects and Protective Action of Transcranial Magnetic Stimulation in Depression Caused by Olfactory Bulbectomy. Neurochem Res 35, 1182–1187 (2010). https://doi.org/10.1007/s11064-010-0172-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0172-9

Keywords

Navigation