Skip to main content
Log in

Cornel Iridoid Glycoside Inhibits Inflammation and Apoptosis in Brains of Rats with Focal Cerebral Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The capacity of cornel iridoid glycoside (CIG) to suppress the manifestations of ischemic stroke was investigated. CIG was administered to rats by the intragastric route once daily for 7 days. Focal cerebral ischemia was induced by 2 h of middle cerebral artery occlusion followed by 24 h of reperfusion. In non-treated rats large infarct areas were observed within 24 h of reperfusion. Examination of the ischemic cerebral cortex revealed microglia and astrocyte activation, increased interleukin-1β (IL-1 β) and tumor necrosis factor-α (TNF-α) concentrations, increased DNA fragmentation in the ischemia penumbra, elevated Bax expression, increased caspase-3 cleavage, and decreased Bcl-2 expression. Pretreatment with CIG decreased the infarct area, DNA fragmentation, IL-1β and TNF-α concentrations, microglia and astrocyte activation, Bax expression, and caspase-3 cleavage while increasing Bcl-2 expression. CIG exerts anti-neuroinflammatory and anti-apoptotic effects which should prove beneficial for prevention or treatment of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meairs S, Wahlgren N, Dirnagl U et al (2006) Stroke research priorities for the next decade—a representative view of the European scientific community. Cerebrovasc Dis 22:75–82

    Article  PubMed  Google Scholar 

  2. Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24:351–371

    Article  PubMed  Google Scholar 

  3. White BC, Sullivan JM, DeGracia DJ et al (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33

    Article  CAS  PubMed  Google Scholar 

  4. Bhat RV, DiRocco R, Marcy VR et al (1996) Increased expression of IL-1beta converting enzyme in hippocampus after ischemia: selective localization in microglia. J Neurosci 16:4146–4154

    CAS  PubMed  Google Scholar 

  5. Rothwell NJ, Loddick SA, Stroemer P (1997) Interleukins and cerebral ischemia. Int Rev Neurobiol 40:281–298

    Article  CAS  PubMed  Google Scholar 

  6. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21:195–218

    Article  CAS  PubMed  Google Scholar 

  7. Banati RB, Gehrmann J, Schubert P et al (1993) Cytotoxicity of microglia. Glia 7:111–118

    Article  CAS  PubMed  Google Scholar 

  8. Du C, Hu R, Csernansky CA et al (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab 16:195–201

    Article  CAS  PubMed  Google Scholar 

  9. Yrjanheikki J, Tikka T, Keinanen R et al (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  CAS  PubMed  Google Scholar 

  10. Liao SL, Chen WY, Raung SL et al (2001) Association of immune responses and ischemic brain infarction in rat. Neuroreport 12:1943–1947

    Article  CAS  PubMed  Google Scholar 

  11. Zhu YZ, Huang SH, Tan BK et al (2004) Antioxidants in Chinese herbal medicines: a biochemical perspective. Nat Prod Rep 21:478–489

    Article  CAS  PubMed  Google Scholar 

  12. Sung YH, Chang HK, Kim SE et al (2009) Anti-Inflammatory and analgesic effects of the aqueous extract of corni fructus in murine RAW 264.7 macrophage cells. J Med Food 12:788–795

    Article  CAS  PubMed  Google Scholar 

  13. Lee SO, Kim SY, Han SM et al (2006) Corni fructus scavenges hydroxy radicals and decreases oxidative stress in endothelial cells. J Med Food 9:594–598

    Article  PubMed  Google Scholar 

  14. Yamabe N, Kang KS, Goto E et al (2007) Beneficial effect of Corni Fructus, a constituent of Hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in Streptozotocin-treated diabetic rats. Biol Pharm Bull 30:520–526

    Article  CAS  PubMed  Google Scholar 

  15. Xu HQ, Hao HP (2004) Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol Pharm Bull 27:1014–1018

    Article  CAS  PubMed  Google Scholar 

  16. Lu HB, Li L, An WL et al (2003) Effect of cornel iridoid glycoside on regeneration of central nervous system of rats with bilateral fornix/fimbria transaction. Chin J Rehabil Theory Practice 9:410–412

    Google Scholar 

  17. Lu HB, Li L, An WL et al (2003) Effect of cornel iridoid glycoside on loss of neurons and enhancing the expression of nerve growth factor of rats with bilateral fornix/fimbria transaction. Chin J Rehabil Theory Practice 9:533–535

    Google Scholar 

  18. Yao RQ, Zhang L, Wang W et al (2009) Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res Bull 79:69–76

    Article  CAS  PubMed  Google Scholar 

  19. Longa EZ, Weinstein PR, Carlson S et al (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    CAS  PubMed  Google Scholar 

  20. Belayev L, Alonso OF, Busto R et al (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622 discussion 1623

    CAS  PubMed  Google Scholar 

  21. Mokudai T, Ayoub IA, Sakakibara Y et al (2000) Delayed treatment with nicotinamide (Vitamin B (3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke 31:1679–1685

    CAS  PubMed  Google Scholar 

  22. Schabitz WR, Kollmar R, Schwaninger M et al (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  23. Amemiya S, Kamiya T, Nito C et al (2005) Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol 516:125–130

    Article  CAS  PubMed  Google Scholar 

  24. Ay I, Sugimori HF, Inklestein SP (2001) Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res 87:71–80

    Article  CAS  PubMed  Google Scholar 

  25. Elibol B, Soylemezoglu F, Unal I et al (2001) Nitric oxide is involved in ischemia-induced apoptosis in brain: a study in neuronal nitric oxide synthase null mice. Neuroscience 105:79–86

    Article  CAS  PubMed  Google Scholar 

  26. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  CAS  PubMed  Google Scholar 

  27. Brea D, Sobrino T, Ramos-Cabrer P et al (2009) Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia. Cerebrovasc Dis 27(Suppl 1):48–64

    Article  CAS  PubMed  Google Scholar 

  28. Del Zoppo GJ (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158:972–982

    Article  CAS  PubMed  Google Scholar 

  29. Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8:1363–1368

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZQ, Wu DC, Huang FP et al (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996:55–66

    Article  CAS  PubMed  Google Scholar 

  31. Lambertsen KL, Meldgaard M, Ladeby R et al (2005) A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:119–135

    Article  CAS  PubMed  Google Scholar 

  32. Touzani O, Boutin H, Chuquet J et al (1999) Potential mechanisms of interleukin-1 involvement in cerebral ischemia. J Neuroimmunol 100:203–215

    Article  CAS  PubMed  Google Scholar 

  33. Rothwell N, Allan S, Toulmond S (1997) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest 100:2648–2652

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Chopp M, Jiang N et al (1995) Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26:1252–1257 discussion 1257–1258

    CAS  PubMed  Google Scholar 

  35. Li Y, Chopp M, Jiang N et al (1995) Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15:389–397

    CAS  PubMed  Google Scholar 

  36. Hsu CY, An G, Liu JS et al (1993) Expression of immediate early gene and growth factor mRNAs in a focal cerebral ischemia model in the rat. Stroke 24:I78–I81

    CAS  PubMed  Google Scholar 

  37. Merry DE, Korsmeyer SJ (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267

    Article  CAS  PubMed  Google Scholar 

  38. Chan PH (2004) Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res 29:1943–1949

    Article  CAS  PubMed  Google Scholar 

  39. Krajewski S, Mai JK, Krajewska M et al (1995) Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci 15:6364–6376

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Basic Research 973 Program of China (Grant No. 2003CB517104), the National Natural Science Foundation of China (Grant No. 90709011, 30973513), and the Beijing Municipal Science and Technology Program of China (Grant No. D0206001043191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ya, Bl., Li, Cy., Zhang, L. et al. Cornel Iridoid Glycoside Inhibits Inflammation and Apoptosis in Brains of Rats with Focal Cerebral Ischemia. Neurochem Res 35, 773–781 (2010). https://doi.org/10.1007/s11064-010-0134-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0134-2

Keywords

Navigation