Skip to main content
Log in

Hemorphins Act as Homeostatic Agents in Response to Endotoxin-Induced Stress

Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of synthetic LVV-hemorphin-7 and hemorphin-7 on hypothalamo-pituitary-adrenocortical axis activity in response to endotoxin-induced stress was studied. The intraperitoneal (ip) endotoxin (lipopolysaccaride, LPS) (0.5 mg/kg) administration in combination with hemorphin (1 mg/kg) induce significant decrease in plasma corticosterone and modest decrease in plasma levels of tumor necrosis factor-alpha (TNFα) in compare with elevated levels of both corticosterone and TNFα in plasma of rats received LPS administration alone. Increased activity of calcineurin in both plasma and brain of rats received ip administration of LPS, was recovered under LPS + hemorphin treatment. In two independent proteome analysis, using 2-dimensional fluorescence difference gel electrophoresis and the isotope coded protein label technology, peptidyl-prolyl cis-trans-isomerase A (cyclophilin A) was identified as regulated by hemorphins protein in mouse brain. A therapeutic potential of hemorphins and mechanisms of their homeostatic action in response to endotoxin-induced stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Glamsta EL, Maklund A, Hellman U et al (1991) Isolation and characterization of hemoglobin derived peptides from the human pituitary gland. Regul Pept 34:169–179

    Article  CAS  PubMed  Google Scholar 

  2. Barkhudaryan N, Oberthuer W, Lottspeich F, Galoyan A (1992) Structure of hypothalamic coronaro-constrictory peptide factors. Neurochem Res 17:1217–1221

    Article  CAS  PubMed  Google Scholar 

  3. Karelin AA, Phillippova M, Karelina EV et al (1994) Isolation of endogenous hemorphin-related hemoglobin fragments from bovine brain. Biochem Biophys Res Commun 202:410–415

    Article  CAS  PubMed  Google Scholar 

  4. Cerpa-Poljak A, Lahnstein J, Mason KE, Smythe GA, Duncan MW (1997) Mass spectrometric identification and quantification of hemorphins extracted from human adrenal and pheochromocytoma tissue. J Neurochem 68:1712–1719

    CAS  PubMed  Google Scholar 

  5. Yatskin ON, Philippova MM, Blishchenko EY et al (1998) LVV- and VV-hemorphins: comparative levels in rat tissues. FEBS Lett 428:286–290

    Article  CAS  PubMed  Google Scholar 

  6. Glamsta EL, Meyerson B, Silberring J (1992) Isolation of a hemoglobin-derived opioid peptide from cerebrospinal fluid of patients with cerebrovascular bleedings. Biochem Biophys Res Commun 184:1060–1066

    Article  CAS  PubMed  Google Scholar 

  7. Nyberg F, Sanderson K, Glamsta EL (1997) The hemorphins: a new class of opioid peptides derived from the blood protein haemoglobin. Biopolymers 43:147–156

    Article  CAS  PubMed  Google Scholar 

  8. Ohyagi Y, Yamada T, Goto I (1994) Hemoglobin as a novel protein developmentally regulated in neurons. Brain Res 635:323–327

    Article  CAS  PubMed  Google Scholar 

  9. Barkhudaryan N, Kellermann J, Galoyan A, Lottspeich F (1993) High molecular weight aspartic endopeptidase generates a coronaro-constrictory peptide from the β-chain of hemoglobin. FEBS Lett 329:215–218

    Article  CAS  PubMed  Google Scholar 

  10. Dagouassat N, Garreau I, Sannier F et al (1996) Generation of VV-hemorphin-7 from globin by peritoneal macrophages. FEBS Lett 382:37–42

    Article  CAS  PubMed  Google Scholar 

  11. Barkhudaryan N (2001) Hemorphins: processing and possible mechanism of action in the brain and immune system. In: Galoyan A (ed) Proceedings on international conference of biochemical and molecular-biological aspects of the brain immune system, Encyclopedia Publishing House, Yerevan, pp 132–139

  12. Sanderson Nydahl K, Pierson J, Nyberg F et al (2003) In vivo processing of LVV-hemorphin-7 in rat brain and blood utilizing microdialysis combined with electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:838–844

    Article  CAS  Google Scholar 

  13. Garreau I, Zhao Q, Pejoan C et al (1995) VV-hemorphin-7 and LVV- hemorphin-7 released during in vitro peptic hemoglobin hydrolysis are morphinomimetic peptides. Neuropeptides 28:243–250

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Q, Garreau I, Sannier F et al (1997) Opioid peptides derived from haemoglobin. Hemorphins. Biopolymers 43:75–98

    Article  CAS  PubMed  Google Scholar 

  15. Moeller I, Lew RA, Mendelsohn FAO et al (1997) The globin fragment LVV-Hemorphin-7 is an endogenous ligand for the AT4 receptor in the brain. J Neurochem 68:2530–2537

    CAS  PubMed  Google Scholar 

  16. Lammerich HP, Busmann A, Kutzleb C et al (2003) Identification and functional characterization of hemorphins VV-H-7 and LVV-H-7 as low-affinity agonists for the orphan bombesin receptor subtype 3. Br J Pharmacol 138:1431–1440

    Article  CAS  PubMed  Google Scholar 

  17. Barkhudaryan N (2005) In vivo microdialysis is a tool to study the mechanism of interaction between LVV-hemorphin-7 and brain serotonergic system. In: Vardapetyan H (ed) Biotechnology and health. Yerevan, pp 32–42

  18. Sanderson K, Nyberg F, Khalil Z (1998) Modulation of peripheral inflammation by locally administered hemorphin-7. Inflamm Res 47:49–55

    Article  CAS  PubMed  Google Scholar 

  19. Moisan S, Harvey N, Beaudry G et al (1998) Structural requirements and mechanism of the pressor activity of Leu-Val-Val- hemorphin-7, a fragment of hemoglobin β-chain in rats. Peptides 19:119–131

    Article  CAS  PubMed  Google Scholar 

  20. Carrasco GA, Van de Kar LD (2003) Neuroendocrine pharmacology of stress. Eur J Pharmacol 463:235–272

    Article  CAS  PubMed  Google Scholar 

  21. Dunn AJ (1995) Interactions between the nervous system and the immune system: implications for psychopharmacology. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation o progress. Raven Press, NY, pp 719–731

    Google Scholar 

  22. Besedovsky HO, Del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypothesis. Endocr Rev 17:64–102

    CAS  PubMed  Google Scholar 

  23. Barsegyan K, Barkhudaryan N, Galoyan A (1992) The investigation of the effect of native and synthetic coronaro-constrictory peptide factors on Ca2+, calmodulin-dependent phosphoprotein phosphatase activity. Neurokhimiya (RAS & NAS RA) 11:141–149

    Google Scholar 

  24. Barkhudaryan N, Gambarov S, Gyulbayazyan T et al (2002) LVV-hemorphin-4 modulates Ca2+/calmodulin-dependent pathways in the immune system by the same mechanism as in the brain. J Mol Neurosci 18:203–210

    Article  CAS  PubMed  Google Scholar 

  25. Serfling E, Berberich-Siebelt F, Chuvpilo S et al (2000) The role of NF-AT transcription factors in Tcell activation and differentiation. Biochim Biophys Acta 1498:1–18

    Article  CAS  PubMed  Google Scholar 

  26. Zeyda M, Geyeregger R, Poglitsch M et al (2007) Impairment of T cell interactions with antigen-presenting cells by immunosuppressive drugs reveals involvement of calcineurin and NF-κB in immunological synapse formation. J Leukoc Biol 81:319–327

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Farmer JD, Lane WS et al (1991) Calcineurin is a common target of cyclophillin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    Article  CAS  PubMed  Google Scholar 

  28. Hens JJH, De Wit M, Ghijsen W et al (1998) Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides. Neurochem 71:1978–1986

    Article  CAS  Google Scholar 

  29. Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18:124–134

    Article  CAS  PubMed  Google Scholar 

  30. Day M, Olson PA, Platzer J et al (2002) Stimulation of 5-HT(2) receptors in prefrontal pyramidal neurons inhibit Ca(v)1.2 L type Ca (2+) currents via PLCbeta/IP3/calcineurin signaling cascade. J Neurophysiol 87:2490–2504

    CAS  PubMed  Google Scholar 

  31. Petrov RV, Mikhailova A, Fonina LA (1997) Bone marrow immunoregulatory peptides (myelopeptides): isolation, structure, and functional activity. Biopolymers 43:139–146

    Article  CAS  PubMed  Google Scholar 

  32. Blishchenko EYu, Sazonova OV, Kalinina OA et al (2005) Anti-tumor effect of valorphin in vitro and in vivo. Combined action with cytostatic drugs. Cancer Biology & Terapy 4:118–124

  33. Mikhailova A, Belevskaya RG, Kalyzhnaya M et al (2006) Mielopeptide-2 recovers intwerleukin-2 synthesis and intwerleukin-2 receptor expression in human T lymphocytes by tumor products or measels virus. J Immunother 29:306–312

    Article  CAS  PubMed  Google Scholar 

  34. Poljak A, McLean CA, Sachdev P et al (2004) Quantification of hemorphins in Alzheimer’s disease brains. J Neurosci Res 75:704–714

    Article  CAS  PubMed  Google Scholar 

  35. Fruitier-Arnaudin M, Cohen S, Nervi S et al (2003) Reduced level of opioid peptides, hemorphin-7 peptides, in serum of diabetic patients. Diabetes Care 26:2480

    Article  Google Scholar 

  36. Yamamoto Y, Kanazawa T, Shimamura M et al (1997) Inhibitoty effects of spinorphin, a novel endogenous regulator, on chemotaxis, O2 generation, and exocytosis by N-formylmethionyl-leucyl-phenylalanine (FMLP)-stimulated neutrophils. Biochem Pharmacol 54:695–701

    Article  CAS  PubMed  Google Scholar 

  37. EYu Blishchenko, Sazonova OV, Surovoy A et al (2002) Antiproliferative action of valorphin in cell cultures. J Pept Sci 8:438–452

    Article  CAS  Google Scholar 

  38. Beishuizen A, Thijs LG (2003) Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res 9:3–24

    CAS  PubMed  Google Scholar 

  39. Kim Y-W, Kim K-H, Ahn D-K et al (2007) Time-course changes of hormones and cytokines by lipopolysaccharide and its relation with anorexia. J Physiol Sci 57:159–165

    Article  PubMed  CAS  Google Scholar 

  40. Besedovsky HO, del Rey A (2008) Brain cytokines as integrator of the immune-neuroendocrine network. In: Galoyan A, Besedovsky H (eds) Handbook of neurochemistry and molecular neurobiology, v. Neuroimmunology, chap. 1. Springer, NY, pp 3–17

  41. Dunn AJ (2008) Effects of the immune system on brain neurochemistry. In: Galoyan A, Besedovsky H (eds) Handbook of neurochemistry and molecular neurobiology, v. Neuroimmunology, chap. 3. Springer, NY, pp 37–59

  42. Suzuki J, Bayna E, Li HL et al (2007) Lipopolysaccharide activates calcineurin in ventricular myocytes. J Am Coll Cardiol 49:491–499

    Article  CAS  PubMed  Google Scholar 

  43. Anthony FA, Merat DL, Cheung WY (1986) A spectrofluorimetric assay of calmodulin-dependent protein phosphatase using 4-methylumbelliferyl phosphate. Anal Biochem 155:103–107

    Article  CAS  PubMed  Google Scholar 

  44. Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  CAS  PubMed  Google Scholar 

  46. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    Article  CAS  PubMed  Google Scholar 

  47. Barkhudaryan N, Orosz F, Liliom K et al (1991) New data on binding of hypothalamic coronaro-constrictory peptide factors with calmodulin. Neurokhimiya (RAS & NAS RA) 10:155–166

    Google Scholar 

  48. Kim YH, Moon YS, Lee KS et al (2004) Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-κB activity in LPS-stimulated mouse peritoneal macrophages and RAW 264.7 cells. Biochem Biophys Res Commun 314:695–703

    Article  CAS  PubMed  Google Scholar 

  49. Wang D, Tolbert LM, Carlson KW et al (2000) Nuclear Ca2+/calmodulin translocation activated by μ-opioid (OP3) receptor. J Neurochem 74:1418–1425

    Article  CAS  PubMed  Google Scholar 

  50. Philippe D, Dubuquoy L, Groux H et al (2003) Anti-inflammatory properties of the μ opioid receptor support its use in the treatment of colon inflammation. J Clin Invest 111:1329–1338

    CAS  PubMed  Google Scholar 

  51. Sacerdote P, Manfredi B, Gaspani L et al (2000) The opioid antagonist naloxone induces a shift from Type 2 to Type 1 cytokine pattern in BALB/cJ mice. Blood 95:2031–2036

    CAS  PubMed  Google Scholar 

  52. McGillis JP, Mitsuhashi M, Payan DG (1991) Immunologic properties of substance P. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology. Academic Press, San Diego, pp 209–223

    Google Scholar 

  53. Da Fonseca Pacheco D, Klein A, de Castro Perez A et al (2008) Theμ-opioid receptor agonist morphine, but not agonists at δ- or κ-opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors. Br J Pharmacol 154:1143–1149

    Article  CAS  PubMed  Google Scholar 

  54. Roche M, Diamond M, Kelly JP, Finn DP (2006) In vivo modulation of LPS-induced alteration in brain and peripheral cytokines and HPA axis activity by cannabinoids. J Neuroimmunol 181:57–67

    Article  CAS  PubMed  Google Scholar 

  55. Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interaction: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    Article  CAS  PubMed  Google Scholar 

  56. Roche M, Kelly JP, O’Driscoll M, Finn DP (2008) Augmentation of endogenous cannabinoid tone modulates lipopolysaccharide-induced alterations in circulating cytokine levels in rats. Immunology 125:263–271

    Article  CAS  PubMed  Google Scholar 

  57. Plotsky PM (1986) Opioid inhibition of immunoreactive corticotrophin-releasing factor secretion into the hypophysial-portal circulation of rats. Regul Pept 16:235–242

    Article  CAS  PubMed  Google Scholar 

  58. McKeen HD, McAlpine K, Valentine A et al (2008) A novel FK506-like binding protein interacts with the glucocorticoid receptors and regulates steroid receptor signalling. Endocrinology 149:5724–5734

    Article  CAS  PubMed  Google Scholar 

  59. Robson T, Joiner MC, Wilson GD et al (1999) A novel human stress response-related gene with a potential role in induced radioresistance. Radiat Res 152:451–461

    Article  CAS  PubMed  Google Scholar 

  60. Sherry PL, Yarlett N, Strupp A et al (1992) Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci USA 89:3511–3515

    Article  CAS  PubMed  Google Scholar 

  61. Hultsch T, Albers NW, Schreiber SL et al (1991) Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription. Proc Natl Acad Sci USA 88:6229–6233

    Article  CAS  PubMed  Google Scholar 

  62. Hirsch DB, Steiner JP, Mammen A et al (1993) Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr Biol 3:749–754

    Article  CAS  PubMed  Google Scholar 

  63. Lee J, Chai SY, Mendelsohn FAO et al (2001) Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV-hemorphin-7. Neuropharmacology 40:618–623

    Article  CAS  PubMed  Google Scholar 

  64. Ge YS, Teng WY, Zhang CD (2009) Protective effect of cyclophilin A against Alzheimer’s amyloid beta-peptide (25-35)-induced oxidative stress in PC12 cells. Clin Med J (Engl) 122:716–724

    CAS  Google Scholar 

  65. Gold BG (2000) Neuroimmunophilin ligands: evaluation of their therapeutic potential for the treatment of neurological disorders. Expert Opin Investig Drugs 9:2331–2342

    Article  CAS  PubMed  Google Scholar 

  66. Galoyan A, Gurvits BY (1992) The discovery of peptidyl-prolyl-cys-trans-isomerase in hypothalamus (its new function). Neurokhimiya (RAS & NAS RA) 11:89–92

    Google Scholar 

  67. Antoni MH, Lutgendorf SK, Cole SW et al (2006) The influence of bio-behavioral factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6:240–248

    Article  CAS  PubMed  Google Scholar 

  68. Jessop DS (2008) Neuropeptides in the immune system: Mediators of stress and inflammation. In: Galoyan A, Besedovsky H (eds) Handbook of neurochemistry and molecular neurobiology, v. Neuroimmunology, chap. 2. Springer, NY, pp 19–35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Barkhudaryan.

Additional information

Special issue article in honor of Professor Armen Galoyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkhudaryan, N., Zakaryan, H., Sarukhanyan, F. et al. Hemorphins Act as Homeostatic Agents in Response to Endotoxin-Induced Stress. Neurochem Res 35, 925–933 (2010). https://doi.org/10.1007/s11064-009-0097-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0097-3

Keywords

Navigation