Skip to main content
Log in

Intermittent Hypercapnic Hypoxia Induced Protein Changes in the Piglet Hippocampus Identified by MALDI-TOF-MS

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Intermittent hypercapnic hypoxia (IHH) induces protein changes in the brainstem, but its effects on the hippocampus have not yet been studied. Using a proteomics-based approach, we tested the hypothesis that IHH up-regulates apoptotic promoters and down-regulates apoptotic inhibitors in the developing hippocampus. Male piglets aged 13–14 days were assigned to control (n = 6) or IHH (n = 5) groups. Using two-dimensional polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), a total of 26 protein spots were differentially expressed in IHH compared to control group. Thirteen of these (6 up-regulated, 7 down-regulated) were identified including 14-3-3θ/τ (increased), glial fibrillary acidic protein (increased) and α-internexin (decreased). Further analysis with western blot validated these proteins and immunohistochemistry showed specific regional changes in the subiculum, stratum radiatum and CA1 of the hippocampus. Most proteins identified were involved in promoting cell survival under apoptotic conditions. These findings improve our understanding of the cellular processes that occur in the hippocampus during IHH exposure, and have important implications in clinical settings where IHH is experienced, for example, during prone sleeping or with obstructive sleep apnea in an infant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

DG:

Dentate gyrus

GFAP:

Glial fibrillary acidic protein

GRP94:

Glucose regulated protein-94

IHC:

Immunohistochemistry

IHH:

Intermittent hypercapnic hypoxia

NMDA:

N-methyl-d-aspartic acid

PP2A:

Serine/threonine protein phosphatase 2A

SIDS:

Sudden infant death syndrome

SR:

Stratum radiatum

Sub:

Subiculum

V-ATPase:

Vacuolar ATP synthase subunit B

WB:

Western blot

References

  1. Willinger M, James LS, Catz C (1991) Defining the sudden infant death syndrome (SIDS): deliberations of an expert panel convened by the National Institute of Child Health and Human Development. Pediatr Pathol 11:677–684

    Article  CAS  PubMed  Google Scholar 

  2. Moon RY, Horne RS, Hauck FR (2007) Sudden infant death syndrome. Lancet 370:1578–1587

    Article  PubMed  Google Scholar 

  3. Mathur R, Douglas NJ (1994) Relation between sudden infant death syndrome and adult sleep apnoea/hypopnoea syndrome. Lancet 344:819–820

    Article  CAS  PubMed  Google Scholar 

  4. Waters KA, Gonzalez A, Jean C et al (1996) Face-straight-down and face-near-straight-down positions in healthy, prone-sleeping infants. J Pediatr 128:616–625

    Article  CAS  PubMed  Google Scholar 

  5. Prisant LM, Dillard TA, Blanchard AR (2006) Obstructive sleep apnea syndrome. J Clin Hypertens (Greenwich) 8:746–750

    Article  Google Scholar 

  6. Waters KA, Tinworth KD (2001) Depression of ventilatory responses after daily, cyclic hypercapnic hypoxia in piglets. J Appl Physiol 90:1065–1073

    CAS  PubMed  Google Scholar 

  7. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    Article  CAS  PubMed  Google Scholar 

  8. Australian Bureau of Statistics (2000) SIDS in Australia 1981–2000 a statistical review. http://www.sidsandkids.org/documents/finalsidspaper2003_002.pdf

  9. Machaalani R, Waters KA (2003) Increased neuronal cell death after intermittent hypercapnic hypoxia in the developing piglet brainstem. Brain Res 985:127–134

    Article  CAS  PubMed  Google Scholar 

  10. Fanous AM, Machaalani R, Waters KA (2006) N-methyl-d-aspartate receptor 1 changes in the piglet brainstem after nicotine and/or intermittent hypercapnic-hypoxia. Neuroscience 142:401–409

    Article  CAS  PubMed  Google Scholar 

  11. Say M, Machaalani R, Waters KA (2007) Changes in serotoninergic receptors 1A and 2A in the piglet brainstem after intermittent hypercapnic hypoxia (IHH) and nicotine. Brain Res 1152:17–26

    Article  CAS  PubMed  Google Scholar 

  12. Tang S, Machaalani R, Waters KA (2008) Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia. Brain Res 1232:195–205

    Article  CAS  PubMed  Google Scholar 

  13. Becker M, Schindler J, Nothwang HG (2006) Neuroproteomics—the tasks lying ahead. Electrophoresis 27:2819–2829

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  CAS  PubMed  Google Scholar 

  15. Waters KA, Meehan B, Huang JQ et al (1999) Neuronal apoptosis in sudden infant death syndrome. Pediatr Res 45:166–172

    Article  CAS  PubMed  Google Scholar 

  16. Johnston MV, Nakajima W, Hagberg H (2002) Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist 8:212–220

    CAS  PubMed  Google Scholar 

  17. Coté A, Gerez T, Brouillette RT et al (2000) Circumstances leading to a change to prone sleeping in sudden infant death syndrome victims. Pediatrics 106:E86

    Article  PubMed  Google Scholar 

  18. Waters KA, Tinworth KD (2005) Habituation of arousal responses after intermittent hypercapnic hypoxia in piglets. Am J Respir Crit Care Med 171:1305–1311

    Article  PubMed  Google Scholar 

  19. Peiris TS, Machaalani R, Waters KA (2004) Brain-derived neurotrophic factor mRNA and protein in the piglet brainstem and effects of Intermittent Hypercapnic Hypoxia. Brain Res 1029:11–23

    Article  CAS  PubMed  Google Scholar 

  20. Machaalani R, Waters KA (2006) Postnatal nicotine and/or intermittent hypercapnic hypoxia effects on apoptotic markers in the developing piglet brainstem medulla. Neuroscience 142:107–117

    Article  CAS  PubMed  Google Scholar 

  21. Alexander-Kaufman K, James G, Sheedy D et al (2006) Differential protein expression in the prefrontal white matter of human alcoholics: a proteomics study. Mol Psychiatry 11:56–65

    Article  CAS  PubMed  Google Scholar 

  22. Kashem MA, Sarker R, Etages HD, Machaalani R et al. (2009) Comparative proteomics in the corpus callosal sub-regions of postmortem human brain. Neurochem Int (in press) (PMID: 19433127)

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  CAS  PubMed  Google Scholar 

  25. Gozal E, Gozal D, Pierce WM et al (2002) Proteomic analysis of CA1 and CA3 regions of rat hippocampus and differential susceptibility to intermittent hypoxia. J Neurochem 83:331–345

    Article  CAS  PubMed  Google Scholar 

  26. Zerr I, Poser S (2002) Clinical diagnosis and differential diagnosis of CJD and vCJD. With special emphasis on laboratory tests. APMIS 110:88–98

    Article  PubMed  Google Scholar 

  27. Pekny M, Leveen P, Pekna M et al (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14:1590–1598

    CAS  PubMed  Google Scholar 

  28. Liedtke W, Edelmann W, Bieri PL et al (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607–615

    Article  CAS  PubMed  Google Scholar 

  29. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437

    Article  CAS  PubMed  Google Scholar 

  30. Garnier P, Demougeot C, Bertrand N et al (2001) Stress response to hypoxia in gerbil brain: HO-1 and Mn SOD expression and glial activation. Brain Res 893:301–309

    Article  CAS  PubMed  Google Scholar 

  31. Olson EE, McKeon RJ (2004) Characterization of cellular and neurological damage following unilateral hypoxia/ischemia. J Neurol Sci 227:7–19

    Article  CAS  PubMed  Google Scholar 

  32. O’Mara S (2006) Controlling hippocampal output: the central role of subiculum in hippocampal information processing. Behav Brain Res 174:304–312

    Article  PubMed  Google Scholar 

  33. Kaplan MP, Chin SS, Fliegner KH et al (1990) Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10:2735–2748

    CAS  PubMed  Google Scholar 

  34. McGraw TS, Mickle JP, Shaw G et al (2002) Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons. J Neurosci 22:4955–4963

    CAS  PubMed  Google Scholar 

  35. Buonocore G, Liberatori S, Bini L et al (1999) Hypoxic response of synaptosomal proteins in term guinea pig fetuses. J Neurochem 73:2139–2148

    CAS  PubMed  Google Scholar 

  36. Liu XY, Yang JL, Chen LJ et al (2008) Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 8:582–603

    Article  CAS  PubMed  Google Scholar 

  37. Yuan A, Rao MV, Sasaki T et al (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    Article  CAS  PubMed  Google Scholar 

  38. Kahlert S, Reiser G (2004) Glial perspectives of metabolic states during cerebral hypoxia–calcium regulation and metabolic energy. Cell Calcium 36:295–302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research was funded by NH&MRC #302006. Prof. Waters is supported by an NH&MRC Practitioner Fellowship (#206507). We thank Jonathan Krygier, a summer undergraduate research student for his contribution in quantification of the GFAP immunohistochemistry. We acknowledge the facilities as well as scientific and technical assistance from staff in the NANO Major National Research Facility at the Electron Microscope Unit, The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Machaalani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S., Machaalani, R., Kashem, M.A. et al. Intermittent Hypercapnic Hypoxia Induced Protein Changes in the Piglet Hippocampus Identified by MALDI-TOF-MS. Neurochem Res 34, 2215–2225 (2009). https://doi.org/10.1007/s11064-009-0021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0021-x

Keywords

Navigation