Skip to main content

Advertisement

Log in

Differentiation Increases the Resistance of Neuronal Cells to Amyloid Toxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A substantial lack of information is recognized on the features underlying the variable susceptibility to amyloid aggregate toxicity of cells with different phenotypes. Recently, we showed that different cell types are variously affected by early aggregates of a prokaryotic hydrogenase domain (HypF-N). In the present study we investigated whether differentiation affects cell susceptibility to amyloid injury using a human neurotypic SH-SY5Y cell differentiation model. We found that retinoic acid-differentiated cells were significantly more resistant against Aβ1-40, Aβ1-42 and HypF-N prefibrillar aggregate toxicity respect to undifferentiated cells treated similarly. Earlier and sharper increases in cytosolic Ca2+ and ROS with marked lipid peroxidation and mitochondrial dysfunction were also detected in exposed undifferentiated cells resulting in apoptosis activation. The reduced vulnerability of differentiated cells matched a more efficient Ca2+-ATPase equipment and a higher total antioxidant capacity. Finally, increasing the content of membrane cholesterol resulted in a remarkable reduction of vulnerability and ability to bind the aggregates in either undifferentiated and differentiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CR:

Congo Red

CM-H2,DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate, acetyl ester

DCF:

Dichlorofluorescein

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethylsulfoxide

ECL:

Enhanced chemiluminescence

FAD:

Familial Alzheimer disease

FBS:

Fetal bovine serum

GAP43:

Growth-associated-protein

HBSS:

Hanks balanced salt solution

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

HRP:

Horseradish peroxidase

HypF-N:

N-Terminal domain of the prokaryotic hydrogenase maturation factor

LDH:

Lactate dehydrogenase

MTP:

Mitochondrial permeability transition pore

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NOS:

NO synthase

PBS:

Phosphate buffered saline

PEG-cholesterol:

Polyoxyetanyl-cholesteryl sebacate

PDTC:

Pyrrolidinedithiocarbamate

PI:

Propidium iodide

PMSF:

Phenylmethylsulphonylfluoride

PS:

Phosphatidylserine

PVDF:

Polyvinylidene difluoride

RA:

Retinoic acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

TFE:

Trifluoroethanol

TM-AFM:

Tapping mode atomic force microscopy

References

  1. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  2. Masters CL, Simms G, Weinman NA et al (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  3. Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  4. Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  5. Bucciantini M, Giannoni E, Chiti F et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  6. Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  PubMed  CAS  Google Scholar 

  7. Gharibyan AL, Zamotin V, Yamanandra K et al (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J Mol Biol 365:1337–1349

    Article  PubMed  CAS  Google Scholar 

  8. Novitskaya V, Bocharova OV, Bronstein I et al (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836

    Article  PubMed  CAS  Google Scholar 

  9. Bokvist M, Lindstrom F, Watts A et al (2004) Two types of Alzheimer’s beta-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049

    Article  PubMed  CAS  Google Scholar 

  10. Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  11. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  PubMed  CAS  Google Scholar 

  12. Kourie JI, Henry CL (2002) Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned molecules. Clin Exp Pharmacol Physiol 29:741–753

    Article  PubMed  CAS  Google Scholar 

  13. Wakabayashi M, Okada T, Kozutsumi Y et al (2005) GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochim Biophys Res Com 328:1019–1023

    Article  CAS  Google Scholar 

  14. Zhu M, Souillac PO, Ionescu-Zanetti C et al (2002) Surface-catalyzed amyloid fibril formation. J Biol Chem 277:50914–50922

    Article  PubMed  CAS  Google Scholar 

  15. Montine TJ, Neely MD, Quinn JF et al (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33:620–626

    Article  PubMed  CAS  Google Scholar 

  16. Mattson MP, Guo Q, Furukawa K et al (1998) Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer’s disease. J Neurochem 70:1–14

    Article  PubMed  CAS  Google Scholar 

  17. Cecchi C, Fiorillo C, Baglioni S et al (2007) Increased susceptibility to amyloid toxicity in familial Alzheimer’s fibroblasts. Neurobiol Aging 28:863–876

    Article  PubMed  CAS  Google Scholar 

  18. Cecchi C, Fiorillo C, Sorbi S et al (2002) Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Rad Biol Med 33:1372–1379

    Article  PubMed  CAS  Google Scholar 

  19. Anderluh G, Gutierrez-Aguirre I, Rabzelj S et al (2005) Interaction of stefin B in the prefibrillar oligomeric form with membranes. Correlation with cellular toxicity. FEBS J 72:3042–3051

    Article  CAS  Google Scholar 

  20. Bucciantini M, Calloni G, Chiti F et al (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279:31374–31382

    Article  PubMed  CAS  Google Scholar 

  21. Cecchi C, Baglioni S, Fiorillo C et al (2005) Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci 118:3459–3470

    Article  PubMed  CAS  Google Scholar 

  22. Dargusch R, Schubert D (2002) Specificity of resistance to oxidative stress. J Neurochem 81:1394–1400

    Article  PubMed  CAS  Google Scholar 

  23. Benvenuti S, Saccardi R, Luciani P et al (2006) A Neuronal differentiation of human mesenchymal stem cells: changes in the expression of the Alzheimer’s disease-related gene seladin-1. Exp Cell Res 312:2592–2604

    Article  PubMed  CAS  Google Scholar 

  24. Haughey NJ, Nath A, Chan SL et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83:1509–1524

    Article  PubMed  CAS  Google Scholar 

  25. Chiti F, Bucciantini M, Capanni C et al (2001) Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci 10:2541–2547

    Article  PubMed  CAS  Google Scholar 

  26. Relini A, Torrassa S, Rolandi R et al (2004) Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J Mol Biol 338:943–957

    Article  PubMed  CAS  Google Scholar 

  27. Datki Z, Papp R, Zadori D et al (2004) In vitro model of neurotoxicity of Abeta 1–42 and neuroprotection by a pentapeptide: irreversible events during the first hour. Neurobiol Dis 17:507–515

    Article  PubMed  CAS  Google Scholar 

  28. Negre-Salvayre A, Auge N, Duval C et al (2002) Detection of intracellular reactive oxygen species in cultured cells using fluorescent probes. Methods Enzymol 352:62–71

    Article  PubMed  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  30. Saborido A, Delgado J, Megias A (1999) Measurement of sarcoplasmic reticulum Ca2+-ATPase activity and E-type Mg2+-ATPase activity in rat heart homogenates. Anal Biochem 268:79–88

    Article  PubMed  CAS  Google Scholar 

  31. Petronilli V, Miotto G, Canton M et al (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–754

    PubMed  CAS  Google Scholar 

  32. Datki Z, Juhasz A, Galfi M et al (2003) Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res Bull 62:223–229

    Article  PubMed  CAS  Google Scholar 

  33. Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1-40) and (1-42) peptides. FASEB J 16:1526–1536

    Article  PubMed  CAS  Google Scholar 

  34. Butterfield DA (2004) Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res 1000:1–7

    Article  PubMed  CAS  Google Scholar 

  35. Demuro A, Mina E, Kayed R et al (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  PubMed  CAS  Google Scholar 

  36. Loo DT, Copani A, Pike CJ et al (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90:7951–7955

    Article  PubMed  CAS  Google Scholar 

  37. Hensley K, Carney JM, Mattson MP et al (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91:3270–3274

    Article  PubMed  CAS  Google Scholar 

  38. Yip CM, Elton EA, Darabie AA et al (2001) Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J Mol Biol 311:723–734

    Article  PubMed  CAS  Google Scholar 

  39. Olesen OF, Dago L, Mikkelsen JD (1998) Amyloid beta neurotoxicity in the cholinergic but not in the serotonergic phenotype of RN46A cells. Brain Res Mol Brain Res 57:266–274

    Article  PubMed  CAS  Google Scholar 

  40. Subasinghe S, Unabia S, Barrow CJ et al (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem 84:471–479

    Article  PubMed  CAS  Google Scholar 

  41. Cecchi C, Pensalfini A, Stefani M, Baglioni S, Fiorillo C, Cappadona S, Caporale R, Nosi D, Ruggiero M, Liguri G (2008) Replicating neuroblastoma cells in different cell-cycle phases display different vulnerability to amyloid toxicity. J Mol Med 86:197–209

    Article  PubMed  CAS  Google Scholar 

  42. Cecchi C, Rosati F, Pensalfini A, Formigli L, Nosi D, Liguri G, Dichiara F, Morello M, Danza G, Pieraccini G, Peri A, Serio M, Stefani M (2008) Seladin-1/DHCR24 protects neuroblastoma cells against Aβ toxicity by increasing membrane cholesterol content. J Cell Mol Med 12 [Epub ahead of print]

  43. Ischiropoulos H, Gow A, Thom SR et al (1999) Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol 301:367–373

    Article  PubMed  CAS  Google Scholar 

  44. Ferreiro E, Resende R, Costa R et al (2006) An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol Dis 23:669–678

    Article  PubMed  CAS  Google Scholar 

  45. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  46. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550

    Article  PubMed  CAS  Google Scholar 

  47. Chan CS, Guzman JN, Ilijic E et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  48. Resende R, Pereira C, Agostinho P et al (2007) Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res 1143:11–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Roberto Caporale for technical advice. This study was supported by grants from the Italian MIUR (project number 2005054147_001 and 2005053998_001) and Compagnia di San Paolo, Torino, Italy (ref. n. 2004.0995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Cecchi.

Additional information

Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecchi, C., Pensalfini, A., Liguri, G. et al. Differentiation Increases the Resistance of Neuronal Cells to Amyloid Toxicity. Neurochem Res 33, 2516–2531 (2008). https://doi.org/10.1007/s11064-008-9627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9627-7

Keywords

Navigation