Skip to main content

Advertisement

Log in

A Metabolomic Study of Brain Tissues from Aged Mice with Low Expression of the Vesicular Monoamine Transporter 2 (VMAT2) Gene

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles in preparation for neurotransmission. Samples of cerebellum, cortex, hippocampus, substantia nigra and striatum from VMAT2-deficient mice were compared to age-matched control mice. Multivariate statistical analyses of 1H NMR spectral profiles separated VMAT2-deficient mice from controls for all five brain regions. Although the data show that metabolic alterations are region- and age-specific, in general, analyses indicated decreases in the concentrations of taurine and creatine/phosphocreatine and increases in glutamate and N-acetyl aspartate in VMAT2-deficient mouse brain tissues. This study demonstrates the efficacy of metabolomics as a functional genomics phenotyping tool for mouse models of neurological disorders, and indicates that mild reductions in the expression of VMAT2 affect normal brain metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Rijk MC, Breteler MM, Graveland GA et al (1995) Prevalence of Parkinson’s disease in the elderly: the Rotterdam study. Neurology 45(12):2143–2146

    PubMed  Google Scholar 

  2. Cohen G (1983) The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence. J Neural Transm Suppl 19:89–103

    PubMed  CAS  Google Scholar 

  3. Liu Y, Peter D, Roghani A et al (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70(4):539–551

    Article  PubMed  CAS  Google Scholar 

  4. Mooslehner KA, Chan PM, Xu W et al (2001) Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: potential mouse model for parkinsonism. Mol Cell Biol 21(16):5321–5331

    Article  PubMed  CAS  Google Scholar 

  5. Colebrooke RE, Humby T, Lynch PJ et al (2006) Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson’s disease. Eur J Neurosci 24(9):2622–2630

    Article  PubMed  Google Scholar 

  6. Glatt CE, Wahner AD, White DJ et al (2006) Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Hum Mol Genet 15(2):299–305

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi N, Miner LL, Sora I et al (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94(18):9938–9943

    Article  PubMed  CAS  Google Scholar 

  8. Uhl GR, Li S, Takahashi N et al (2000) The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J 14(15):2459–2465

    Article  PubMed  CAS  Google Scholar 

  9. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  PubMed  CAS  Google Scholar 

  10. Griffin JL (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos Trans R Soc Lond B Biol Sci 359(1446):857–871

    Article  PubMed  CAS  Google Scholar 

  11. Griffin JL (2006) The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc Lond B Biol Sci 361(1465):147–161

    Article  PubMed  CAS  Google Scholar 

  12. Le Belle JE, Harris NG, Williams SR et al (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15(1):37–44

    Article  PubMed  CAS  Google Scholar 

  13. Macura S, Huang Y (1981) Two-dimensional chemical exchange and cross-relaxation spectroscopy of coupled nuclear spins. J Magn Reson 43(2):259–281

    CAS  Google Scholar 

  14. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153

    Article  PubMed  CAS  Google Scholar 

  15. Lindon JC, Nicholson JK, Everett JR (1999) NMR spectroscopy of biofluids. Annual reports on NMR spectroscopy, vol 38. pp 1–88

  16. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

    Google Scholar 

  17. Wold S, Albano C, Dunn WJ et al (1984) Multivariate data analysis in chemistry. In: Kowalski BR (ed) Chemometrics: mathematics and statistics in chemistry. D. Reidel Publishing Company, Holland

    Google Scholar 

  18. Höskuldsson A (1996) Prediction methods in science and technology. Thor Publishing, Copenhagen

    Google Scholar 

  19. Eriksson L, Johansson E, Kettaneh-Wold N et al (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA and PLS). Umetrics, Umea

    Google Scholar 

  20. Wang YM, Gainetdinov RR, Fumagalli F et al (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19(6):1285–1296

    Article  PubMed  CAS  Google Scholar 

  21. Miller GW, Erickson JD, Perez JT et al (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156(1):138–148

    Article  PubMed  CAS  Google Scholar 

  22. Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74(1):254–262

    Article  PubMed  CAS  Google Scholar 

  23. Ellis CM, Lemmens G, Williams SC et al (1997) Changes in putamen N-acetylaspartate and choline ratios in untreated and levodopa-treated Parkinson’s disease: a proton magnetic resonance spectroscopy study. Neurology 49(2):438–444

    PubMed  CAS  Google Scholar 

  24. Holshouser BA, Komu M, Moller HE et al (1995) Localized proton NMR spectroscopy in the striatum of patients with idiopathic Parkinson’s disease: a multicenter pilot study. Magn Reson Med 33(5):589–594

    Article  PubMed  CAS  Google Scholar 

  25. Dunlop DS, Mc Hale DM, Lajtha A (1992) Decreased brain N-acetylaspartate in Huntington’s disease. Brain Res 580(1–2):44–48

    Article  PubMed  CAS  Google Scholar 

  26. Klunk WE, Panchalingam K, Moossy J et al (1992) N-acetyl-l-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology 42(8):1578–1585

    PubMed  CAS  Google Scholar 

  27. Meyerhoff DJ, MacKay S, Bachman L et al (1993) Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 43(3 Pt 1):509–515

    PubMed  CAS  Google Scholar 

  28. Pears MR, Cooper JD, Mitchison HM et al (2005) High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease. J Biol Chem 280(52):42508–42514

    Article  PubMed  CAS  Google Scholar 

  29. Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32(6):471–533

    Article  PubMed  CAS  Google Scholar 

  30. Sturman JA (1993) Taurine in development. Physiol Rev 73(1):119–147

    PubMed  CAS  Google Scholar 

  31. Dawson R Jr, Pelleymounter MA, Cullen MJ et al (1999) An age-related decline in striatal taurine is correlated with a loss of dopaminergic markers. Brain Res Bull 48(3):319–324

    Article  PubMed  CAS  Google Scholar 

  32. Benedetti MS, Russo A, Marrari P et al (1991) Effects of ageing on the content in sulfur-containing amino acids in rat brain. J Neural Transm Gen Sect 86(3):191–203

    Article  PubMed  CAS  Google Scholar 

  33. Wallace DR, Dawson R Jr (1990) Effect of age and monosodium-l-glutamate (MSG) treatment on neurotransmitter content in brain regions from male Fischer-344 rats. Neurochem Res 15(9):889–898

    Article  PubMed  CAS  Google Scholar 

  34. Brownell AL, Jenkins BG, Elmaleh DR et al (1998) Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 4(11):1308–1312

    Article  PubMed  CAS  Google Scholar 

  35. Podell M, Hadjiconstantinou M, Smith MA et al (2003) Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol 179(2):159–166

    Article  PubMed  CAS  Google Scholar 

  36. Bothwell JH, Rae C, Dixon RM et al (2001) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J Neurochem 77(6):1632–1640

    Article  PubMed  CAS  Google Scholar 

  37. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265(2):54–84

    Article  PubMed  CAS  Google Scholar 

  38. Bluml S, Zuckerman E, Tan J et al (1998) Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J Neurochem 71(4):1564–1576

    Article  PubMed  CAS  Google Scholar 

  39. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15(3–5):289–298

    Article  PubMed  CAS  Google Scholar 

  40. Isaacks RE, Bender AS, Kim CY et al (1994) Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res 19(3):331–338

    Article  PubMed  CAS  Google Scholar 

  41. Saraf-Lavi E, Bowen BC, Pattany PM et al (2003) Proton MR spectroscopy of gliomatosis cerebri: case report of elevated myoinositol with normal choline levels. AJNR Am J Neuroradiol 24(5):946–951

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grant R21 DK070288-01, USA (RMS), The Royal Society, UK (a University Research Fellowship to JLG), the UK Parkinson’s Disease Society (Grant No 4039) and the BBSRC (PCE and PJL). REC was supported by an MRC case studentship with Sanofi-Aventis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian L. Griffin.

Additional information

Special issue article in honor of Dr. Frode Fonnum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salek, R.M., Colebrooke, R.E., Macintosh, R. et al. A Metabolomic Study of Brain Tissues from Aged Mice with Low Expression of the Vesicular Monoamine Transporter 2 (VMAT2) Gene. Neurochem Res 33, 292–300 (2008). https://doi.org/10.1007/s11064-007-9542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9542-3

Keywords

Navigation