Skip to main content
Log in

Regulation of c-fos, c-jun and c-myc Gene Expression by Angiotensin II in Primary Cultured Rat Astrocytes: Role of ERK1/2 MAP Kinases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have previously shown that angiotensin II (Ang II) stimulates astrocyte growth through activation of ERK1/2 mitogen activated protein (MAP) kinases. In the current study, we determined whether Ang II stimulates the expression of c-fos, c-jun and c-myc in brainstem astrocyte cultures. Reverse transcriptase-PCR analysis showed c-fos, c-jun, and c-myc mRNAs were induced by Ang II. The EC50 values for Ang II stimulation of c-fos, c-jun and c-myc were 1.3, 1.68 and 1.4 nM, respectively. Ang II (100 nM) induced peak stimulation for all genes by 45 min followed by a gradual decline. Inhibition of ERK1/2 by PD98059 attenuated Ang II-induced c-fos and c-myc mRNA expression (by 75% and 100%, respectively) but was ineffective in preventing Ang II induction of c-jun. These studies show for the first time in brainstem astrocytes that Ang II induces the expression of c-fos, c-myc and c-jun, and showed that ERK1/2 mediate Ang II stimulation of c-fos and c-myc. These data implicate the ERK1/2 MAP kinase pathway as a divergent point in controlling Ang II stimulation of immediate early response genes in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moriguchi A, Tallant EA, Matsumura K, Reilly TM, Walton H, Ganten D, Ferrario CM (1995) Opposing actions of angiotensin-(1–7) and angiotensin II in the brain of transgenic hypertensive rats. Hypertension 25:1260–1265

    PubMed  CAS  Google Scholar 

  2. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  PubMed  CAS  Google Scholar 

  3. Raizada MK, Stenstrom B, Phillips MI, Sumners C (1984) Angiotensin II in neuronal cultures from brains of normotensive and hypertensive rats. Am J Physiol 247:C115–C119

    PubMed  CAS  Google Scholar 

  4. Tallant EA, Diz DI, Ferrario CM (1996) Identification of AT1 receptors on cultured astrocytes. Adv Exp Med Biol 396:121–129

    PubMed  CAS  Google Scholar 

  5. Tallant EA, Higson JT (1997) Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia 19:333–342

    Article  PubMed  CAS  Google Scholar 

  6. Tallant EA, Jaiswal N, Diz DI, Ferrario CM (1991) Human astrocytes contain two distinct angiotensin receptor subtypes. Hypertension 18:32–39

    PubMed  CAS  Google Scholar 

  7. Sumners C, Zhu M, Gelband CH, Posner P (1996) Angiotensin II type 1 receptor modulation of neuronal K+ and Ca2+ currents: intracellular mechanisms. Am J Physiol 271:C154–C163

    PubMed  CAS  Google Scholar 

  8. Zhu M, Gelband CH, Posner P, Sumners C (1999) Angiotensin II decreases neuronal delayed rectifier potassium current: role of calcium/calmodulin-dependent protein kinase II. J Neurophysiol 82:1560–1568

    PubMed  CAS  Google Scholar 

  9. Clark M (2001) Angiotensin II activates mitogen-activated protein kinases and stimulates growth in rat medullary astrocytes. FASEB J A1169

  10. Sun C, Sumners C, Raizada MK (2002) Chronotropic action of angiotensin II in neurons via protein kinase C and CaMKII. Hypertension 39:562–566

    Article  PubMed  CAS  Google Scholar 

  11. Zimmerman MC, Sharma RV, Davisson RL (2005) Superoxide mediates angiotensin II-induced influx of extracellular calcium in neural cells. Hypertension 45:717–723

    Article  PubMed  CAS  Google Scholar 

  12. Clark MA, Gonzalez N (2007) Src and Pyk2 mediate angiotensin II effects in cultured rat astrocytes. Regul Pept 143:47–55

    Article  PubMed  CAS  Google Scholar 

  13. Veerasingham SJ, Raizada MK (2003) Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol 139:191–202

    Article  PubMed  CAS  Google Scholar 

  14. Herdegen T, Kovary K, Buhl A, Bravo R, Zimmermann M, Gass P (1995) Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain. J Comp Neurol 354:39–56

    Article  PubMed  CAS  Google Scholar 

  15. Blume A, Herdegen T, Unger T (1999) Angiotensin peptides and inducible transcription factors. J Mol Med 77:339–357

    Article  PubMed  CAS  Google Scholar 

  16. Chan JY, Chen WC, Lee HY, Chan SH (1998) Elevated Fos expression in the nucleus tractus solitarii is associated with reduced baroreflex response in spontaneously hypertensive rats. Hypertension 32:939–944

    PubMed  CAS  Google Scholar 

  17. Chan JY, Wang LL, Lee HY, Chan SH (2002) Augmented upregulation by c-fos of angiotensin subtype 1 receptor in nucleus tractus solitarii of spontaneously hypertensive rats. Hypertension 40:335–341

    Article  PubMed  CAS  Google Scholar 

  18. Chan SH, Chao YM, Tseng CJ, Chan JY (2002) Down-regulation of basal Fos expression at nucleus tractus solitarii underlies restoration of baroreflex response after antihypertensive treatment in spontaneously hypertensive rats. Neuroscience 112:113–120

    Article  PubMed  CAS  Google Scholar 

  19. Luoh SH, Chan SH (2001) Inhibition of baroreflex by angiotensin II via Fos expression in nucleus tractus solitarii of the rat. Hypertension 38:130–135

    PubMed  CAS  Google Scholar 

  20. Wang X, Abdel-Rahman AA (2004) An association between ethanol-evoked enhancement of c-jun gene expression in the nucleus tractus solitarius and the attenuation of baroreflexes. Alcohol Clin Exp Res 28:1264–1272

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Li G, Abdel-Rahman AA (2005) Site-dependent inhibition of neuronal c-jun in the brainstem elicited by imidazoline I1 receptor activation: role in rilmenidine-evoked hypotension. Eur J Pharmacol 514:191–199

    PubMed  CAS  Google Scholar 

  22. Hashimoto K, Parker A, Malone P, Gabelt BT, Rasmussen C, Kaufman PS, Hernandez MR (2005) Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro. Brain Res 1054:103–115

    Article  PubMed  CAS  Google Scholar 

  23. Blume A, Neumann C, Dorenkamp M, Culman J, Unger T (2002) Involvement of adrenoceptors in the angiotensin II-induced expression of inducible transcription factors in the rat forebrain and hypothalamus. Neuropharmacology 42:281–288

    Article  PubMed  CAS  Google Scholar 

  24. Blume A, Undeutsch C, Zhao Y, Kaschina E, Culman J, Unger T (2005) ANG III induces expression of inducible transcription factors of AP-1 and Krox families in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R845–R850

    PubMed  CAS  Google Scholar 

  25. Shi L, Hu F, Morrissey P, Yao J, Xu Z (2003) Intravenous angiotensin induces brain c-fos expression and vasopressin release in the near-term ovine fetus. Am J Physiol Endocrinol Metab 285:E1216–E1222

    PubMed  CAS  Google Scholar 

  26. Yu K, Lu D, Paddy MR, Lenk SE, Raizada MK (1996) Angiotensin II regulation of plasminogen activator inhibitor-1 gene expression in neurons of normotensive and spontaneously hypertensive rat brains. Endocrinology 137:2503–2513

    Article  PubMed  CAS  Google Scholar 

  27. Raizada MK, Rydzewski B, Lu D, Sumners C (1993) Angiotensin II type 1 receptor-mediated stimulation of c-fos gene expression in astroglial cultures. Am J Physiol 265:C1046–C1049

    PubMed  CAS  Google Scholar 

  28. Ding B, Huang SL, Zhang SQ, Li YX (1999) Inhibitory effect of MAP kinase antisense oligonucleotide on angiotensin II-induced c-myc gene expression and proliferation of rat cardiac fibroblast. Acta Pharmacol Sin 20:934–940

    CAS  Google Scholar 

  29. Naftilan AJ, Pratt RE, Dzau VJ (1989) Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83:1419–1424

    Article  PubMed  CAS  Google Scholar 

  30. Wolf G, Neilson EG (1990) Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol 259:F768–F777

    PubMed  CAS  Google Scholar 

  31. Banerjee M, Dinda AK, Sinha S, Sarkar C, Mathur M (1996) c-myc oncogene expression and cell proliferation in mixed oligo-astrocytoma. Int J Cancer 65:730–733

    Article  PubMed  CAS  Google Scholar 

  32. Hayashi S, Yamamoto M, Ueno Y, Ikeda K, Ohshima K, Soma G, Fukushima T (2001) Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol Med Chir 41:187–195

    Article  CAS  Google Scholar 

  33. Chalmers CJ, Gilley R, March HN, Balmanno K, Cook SJ (2007) The duration of ERK1/2 activity determines the activation of c-Fos and Fra-1 and the composition and quantitative transcriptional output of AP-1. Cell Signal 19:695–704

    Article  PubMed  CAS  Google Scholar 

  34. Han HJ, Han JY, Heo JS, Lee SH, Lee MY, Kim YH (2007) ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC as well as EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse embryonic stem cells. J Cell Physiol 211:618–629

    Article  PubMed  CAS  Google Scholar 

  35. Zhang SQ, Ding B, Guo ZG, Li YX (2004) Inhibitory effect of antisense oligodeoxynucleotide to p44/p42 MAPK on angiotensin II-induced hypertrophic response in cultured neonatal rat cardiac myocyte. Acta Pharmacol Sin 25:41–46

    PubMed  Google Scholar 

  36. Xi XP, Graf K, Goetze S, Fleck E, Hsueh WA, Law RE (1999) Central role of the MAPK pathway in ang II-mediated DNA synthesis and migration in rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:73–82

    PubMed  CAS  Google Scholar 

  37. Schummer B, Hauptfleisch S, Siegsmund M, Schummer M, Lemmer B (1998) Highly Accurate quantification of mRNA expression by means of titan one tube RT-PCR and capillary electrophoresis. Biochemica 2:31–33

    Google Scholar 

  38. Touyz RM, He G, Wu XH, Park JB, Mabrouk ME, Schiffrin EL (2001) Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension 38:56–64

    PubMed  CAS  Google Scholar 

  39. Ozawa N, Shichiri M, Fukai N, Yoshimoto T, Hirata Y (2004) Regulation of adrenomedullin gene transcription and degradation by the c-myc gene. Endocrinology 145:4244–4250

    Article  PubMed  CAS  Google Scholar 

  40. Morris BJ, Newman-Tancredi A, Audinot V, Simpson CS, Millan MJ (2000) Activation of dopamine D(3) receptors induces c-fos expression in primary cultures of rat striatal neurons. J. Neurosci Res 59:740–749

    Article  PubMed  CAS  Google Scholar 

  41. Lerea LS, Carlson NG, Simonato M, Morrow JD, Roberts JL, McNamara JO (1997) Prostaglandin F2alpha is required for NMDA receptor-mediated induction of c-fos mRNA in dentate gyrus neurons. J Neurosci 17:117–124

    PubMed  CAS  Google Scholar 

  42. Amemiya T, Kambe T, Fukumori R, Kubo T (2005) Role of protein kinase C beta in phorbol ester-induced c-fos gene expression in neurons of normotensive and spontaneously hypertensive rat brains. Brain Res 1040:129–136

    Article  PubMed  CAS  Google Scholar 

  43. Griffiths R, Grieve A, Ritchie L, Scott M, Meredith C (2002) Differential mechanisms of glutamate-stimulated perturbations in the kinetics of c-fos mRNA induction are associated with maturation of cerebellar granule cells in primary culture. Neurochem Res 27:67–77

    Article  PubMed  CAS  Google Scholar 

  44. Saadane N, Alpert L, Chalifour LE (1999) Expression of immediate early genes, GATA-4, and Nkx-2.5 in adrenergic-induced cardiac hypertrophy and during regression in adult mice. Br J Pharmacol 127:1165–1176

    Article  PubMed  CAS  Google Scholar 

  45. Kim-Mitsuyama S, Izumi Y, Izumiya Y, Namba M, Yoshida K, Wake R, Yoshiyama M, Iwao H (2006) Dominant-negative c-Jun inhibits rat cardiac hypertrophy induced by angiotensin II and hypertension. Gene therapy 13:348–355

    Article  PubMed  CAS  Google Scholar 

  46. Kasper SO, Carter CS, Ferrario CM, Ganten D, Ferder LF, Sonntag WE, Gallagher PE, Diz DI (2005) Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin-angiotensin systems. Physiol Genomics 23:311–317

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Heart, Lung and Blood Institutes Grant HL-077199 and a President’s Faculty Research & Development Grant from Nova Southeastern University. We are grateful to Drs. E. Ann Tallant and Debra Diz for their thoughtful suggestions in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle A. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaney, J., Chiarello, R., Villar, D. et al. Regulation of c-fos, c-jun and c-myc Gene Expression by Angiotensin II in Primary Cultured Rat Astrocytes: Role of ERK1/2 MAP Kinases. Neurochem Res 33, 545–550 (2008). https://doi.org/10.1007/s11064-007-9474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9474-y

Keywords

Navigation