Skip to main content

Advertisement

Log in

Interferon-γ Promotes Differentiation of Neural Progenitor Cells via the JNK Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been reported that interferon-γ (IFN-γ) facilitates differentiation of PC-12 cells and murine adult neural stem cells. Here we show that IFN-γ promotes the differentiation of C17.2 neural progenitor cells (NPC) into a neuronal phenotype characterized by neurite outgrowth and the expression of the neuronal marker protein β-III tubulin. IFN-γ induced an increase in the activity c-jun N-terminal kinase (JNK) without affecting activities of extracellular signal-regulated kinases (ERKs 1 and 2). An inhibitor of JNK blocked the ability of IFN-γ to promote differentiation of NPC into neurons, whereas an inhibitor of ERKs 1 and 2 did not. Our findings show that the pro-inflammatory cytokine, IFN-γ has the potential to stimulate neurogenesis, suggesting roles for this cytokine in development and repair of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

EGF:

Epidermal growth factor

bFGF:

Basic fibroblast growth factor

IFN-γ:

Interferon-γ

MAP:

Mitogen-activated protein

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

DR:

Dietary restriction

References

  1. Rao MS, Mattson MP (2001) Stem cells and aging: expanding the possibilities. Mech Ageing Dev 122:713–734

    Article  PubMed  CAS  Google Scholar 

  2. Vaccarino FM, Ganat Y, Zhang Y et al (2001) Stem cells in neurodevelopment and plasticity. Neuropsychopharmacology 25:805–815

    Article  PubMed  CAS  Google Scholar 

  3. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715

    Article  PubMed  CAS  Google Scholar 

  4. Pencea V, Bingaman KD, Wiegand SJ et al (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717

    PubMed  CAS  Google Scholar 

  5. Cheng A, Wang S, Yang D et al (2003) Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J Biol Chem 278:7591–7599

    Article  PubMed  CAS  Google Scholar 

  6. Hauben E, Butovsky O, Nevo U et al (2000) Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 20:6421–6430

    PubMed  CAS  Google Scholar 

  7. Hirschberg DL, Yoles E, Belkin M et al (1994) Inflammation after axonal injury has conflicting consequences for recovery of function: rescue of spared axons is impaired but regeneration is supported. J Neuroimmunol 50:9–16

    Article  PubMed  CAS  Google Scholar 

  8. Improta T, Salvatore AM, Di Luzio A et al (1988) IFN-gamma facilitates NGF-induced neuronal differentiation in PC12 cells. Exp Cell Res 179:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Iosif RE, Ekdahl CT, Ahlenius H et al (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26:9703–9712

    Article  PubMed  CAS  Google Scholar 

  10. Kaneko N, Kudo K, Mabuchi T et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat Dentate Gyrus. Neuropsychopharmacology

  11. Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254

    Article  PubMed  CAS  Google Scholar 

  12. Kim IJ, Beck HN, Lein PJ et al (2002) Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci 22:4530–4539

    PubMed  CAS  Google Scholar 

  13. Vikman KS, Owe-Larsson B, Brask J et al (2001) Interferon-gamma-induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Res 896:18–29

    Article  PubMed  CAS  Google Scholar 

  14. Brask J, Kristensson K, Hill RH (2004) Exposure to interferon-gamma during synaptogenesis increases inhibitory activity after a latent period in cultured rat hippocampal neurons. Eur J Neurosci 19:3193–3201

    Article  PubMed  Google Scholar 

  15. Wong G, Goldshmit Y, Turnley AM (2004) Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol 187:171–177

    Article  PubMed  CAS  Google Scholar 

  16. Lee J, Kim SJ, Son TG et al (2006) Interferon-gamma is up-regulated in the hippocampus in response to intermittent fasting and protects hippocampal neurons against excitotoxicity. J Neurosci Res 83:1552–1557

    Article  PubMed  CAS  Google Scholar 

  17. Cho SG, Yi SY, Yoo YS (2005) IFNgamma and TNFalpha synergistically induce neurite outgrowth on PC12 cells. Neurosci Lett 378:49–54

    Article  PubMed  CAS  Google Scholar 

  18. Snyder EY, Deitcher DL, Walsh C et al (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  PubMed  CAS  Google Scholar 

  19. Niles LP, Armstrong KJ, Rincon Castro LM et al (2004) Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci 5:41

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y, Ren W, Chen F (2006) Knockdown of Stat3 in C17.2 neural stem cells facilitates the generation of neurons: a possibility of transplantation with a low level of oncogene. Neuroreport 17:235–238

    Article  PubMed  CAS  Google Scholar 

  21. Neumann H, Schmidt H, Cavalie A et al (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. J Exp Med 185:305–316

    Article  PubMed  CAS  Google Scholar 

  22. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  PubMed  CAS  Google Scholar 

  23. Rueda D, Navarro B, Martinez-Serrano A et al (2002) The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 277:46645–46650

    Article  PubMed  CAS  Google Scholar 

  24. Hao Y, Creson T, Zhang L et al (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    Article  PubMed  CAS  Google Scholar 

  25. Ben-Hur T, Ben-Menachem O, Furer V et al (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24:623–631

    Article  PubMed  CAS  Google Scholar 

  26. Akerud P, Canals JM, Snyder EY et al (2001) Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease. J Neurosci 21:8108–8118

    PubMed  CAS  Google Scholar 

  27. Arenas E (2002) Stem cells in the treatment of Parkinson’s disease. Brain Res Bull 57:795–808

    Article  PubMed  CAS  Google Scholar 

  28. Nakagawa S, Kim JE, Lee R et al (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22:3673–3682

    PubMed  CAS  Google Scholar 

  29. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14–21

    Article  PubMed  CAS  Google Scholar 

  30. Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2:199–201

    PubMed  CAS  Google Scholar 

  31. Amura CR, Marek L, Winn RA et al (2005) Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Mol Cell Biol 25:10791–10802

    Article  PubMed  CAS  Google Scholar 

  32. Katsoulidis E, Li Y, Mears H et al (2005) The p38 mitogen-activated protein kinase pathway in interferon signal transduction. J Interferon Cytokine Res 25:749–756

    Article  PubMed  CAS  Google Scholar 

  33. Lee J, Duan W, Long JM et al (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15:99–108

    Article  PubMed  CAS  Google Scholar 

  34. Lee J, Seroogy KB, Mattson MP (2002) Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 80:539–547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant number 105075–3 from the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea. This work was also supported by the Brain Korea 21 Project in 2006, and the National Institute on Aging Intramural Research Program of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J., Son, T.G., Kim, K. et al. Interferon-γ Promotes Differentiation of Neural Progenitor Cells via the JNK Pathway. Neurochem Res 32, 1399–1406 (2007). https://doi.org/10.1007/s11064-007-9323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9323-z

Keywords

Navigation