Skip to main content

Advertisement

Log in

Nerve Growth Factor Differentially Affects Spatial and Recognition Memory in Aged Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In rats, object discrimination depends on the integrity of the cholinergic system, thus it could be expected that nerve growth factor (NGF) can improve the behavior in aged subjects. The interactive effect of age and cholinergic improvement was assessed behaviorally in young and aged rats. Animals were injected by infusion of NGF into the lateral ventricles and they were tested in two behavioral tasks: an object-location and an object-recognition task. Spatial and recognition memory were assessed in an open field containing five different objects. Rats were submitted to six consecutive sessions. Both age-groups showed comparable habituation of exploratory response in Session 1–4. Discrimination index (DI) was calculated to assess responses to spatial change in Session 5 and object change in Session 6. Control young and aged rats were able to discriminate between familiar and novel object, however DI was lower in aged rats. Treatment with NGF induced decline of object discrimination in both age-groups. Different results were obtained in spatial displacement test. NGF was able to improve spatial memory in aged rats, but had no effect in young controls. These data confer on NGF potential role in improving spatial but not episodic memory in aged rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saragovi HU (2005) Progression of age-associated cognitive impairment correlates with quantitative and qualitative loss of TrkA receptor protein in nucleus basalis and cortex. J Neurochem 95:1472–1480

    Article  PubMed  CAS  Google Scholar 

  2. McKinney M, Jacksonville MC (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70:1115–1124

    Article  PubMed  CAS  Google Scholar 

  3. Sarter M, Bruno JP (2004) Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities. Neurobiol Aging 25:1127–1139

    Article  PubMed  CAS  Google Scholar 

  4. Birthelmer A, Stemmelin J, Jackisch R, Cassel JC (2003) Presynaptic modulation of acetylcholine, noradrenaline, and serotonin release in the hippocampus of aged rats with various levels of memory impairments. Brain Res Bull 60:283–296

    Article  PubMed  CAS  Google Scholar 

  5. Herzog CD, Nowak KA, Sarter M, Bruno JP (2003) Microdialysis without acetylcholinesterase inhibition reveals an age-related attenuation in stimulated cortical acetylcholine release. Neurobiol Aging 24:861–863

    Article  PubMed  CAS  Google Scholar 

  6. Mayo W, George O, Darbra S, Bouyer JJ, Vallee M, Darnaudery M, Pallares M, Lemaire-Mayo V, Le Moal M, Piazza PV, Abrous N (2003) Individual differences in cognitive aging: implication of pregnenolone sulfate. Prog Neurobiol 71:43–48

    Article  PubMed  CAS  Google Scholar 

  7. Feuerstein TJ, Seeger W (1997) Modulation of acetylcholine release in human cortical slices: possible implications for Alzheimer’s disease. Pharmacol Ther 74:333–347

    Article  PubMed  CAS  Google Scholar 

  8. de Lacalle S, Iraizoz I, Ma Gonzalo L (1991) Differential changes in cell size and number in topographic subdivisions of human basal nucleus in normal aging. Neuroscience 43:445–456

    Article  PubMed  Google Scholar 

  9. Stroessner-Johnson HM, Rapp PR, Amaral DG (1992) Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey. J Neurosci 12:1936–1944

    PubMed  CAS  Google Scholar 

  10. Niewiadomska G, Komorowski S, Baksalerska-Pazera M (2002) Amelioration of cholinergic neurons dysfunction in aged rats depends on the continuous supply of NGF. Neurobiol Aging 23:601–613

    Article  PubMed  CAS  Google Scholar 

  11. Baxter MG, Frick KM, Price DL, Breckler SJ, Markowska AL, Gorman LK (1999) Presynaptic markers of cholinergic function in the rat brain: relationship with age and cognitive status. Neuroscience 89:771–779

    Article  PubMed  CAS  Google Scholar 

  12. Freo U, Ricciardi E, Pietrini P, Schapiro MB, Rapoport SI, Furey ML (2005) Pharmacological modulation of prefrontal cortical activity during a working memory task in young and older humans: a PET study with physostigmine. Am J Psychiatry 162:2061–2070

    Article  PubMed  Google Scholar 

  13. Smith TD, Gallagher M, Leslie FM (1995) Cholinergic binding sites in rat brain: analysis by age and cognitive status. Neurobiol Aging 16:161–173

    Article  PubMed  CAS  Google Scholar 

  14. Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Fukuyama H, Saga T, Saji H (2004) Quantification of human nicotinic acetylcholine receptors with 123I-5IA SPECT. J Nucl Med 45:1458–1470

    PubMed  CAS  Google Scholar 

  15. Tribollet E, Bertrand D, Marguerat A, Raggenbass M (2004) Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience 124:405–420

    Article  PubMed  CAS  Google Scholar 

  16. Geula C, Mesulam MM, Saroff DM, Wu CK (1998) Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease. J Neuropathol Exp Neurol 57:63–75

    PubMed  CAS  Google Scholar 

  17. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  PubMed  CAS  Google Scholar 

  18. Jacobsen JS (2002) Alzheimer’s disease: an overview of current and emerging therapeutic strategies. Curr Top Med Chem 2:343–352

    Article  PubMed  CAS  Google Scholar 

  19. Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 50:433–440

    Article  PubMed  CAS  Google Scholar 

  20. Hefti F (1997) Pharmacology of neurotrophic factors. Annu Rev Pharmacol Toxicol 37:239–267

    Article  PubMed  CAS  Google Scholar 

  21. Thal LJ (1996) Neurotrophic factors. Prog Brain Res 109:327–330

    Article  PubMed  CAS  Google Scholar 

  22. Thoenen H, Bandtlow C, Heumann R (1987) The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 109:145–178

    PubMed  CAS  Google Scholar 

  23. Perez-Polo JR, Werrbach-Perez K, Marchetti D, Morgan B, Taglialatela G, Ramacci MT, Angelucci L (1990) Nerve growth factor activity and aging in CNS. Int J Clin Pharmacol Res 10:15–26

    PubMed  CAS  Google Scholar 

  24. Hayashi M (1996) Neurotrophins and the primate central nervous system: a minireview. Neurochem Res 21:739–747

    PubMed  CAS  Google Scholar 

  25. Zhou J, Bradford HF (1999) Nerve growth factors and the control of neurotransmitter phenotype selection in the mammalian central nervous system. Prog Neurobiol 53:27–43

    Article  Google Scholar 

  26. Niewiadomska G, Baksalerska-Pazera M, Riedel G (2005) Altered cellular distribution of phospho-tau proteins coincides with impaired retrograde axonal transport of NGF in aged rats. Ann NY Acad Sci 1048:287–295

    Article  PubMed  CAS  Google Scholar 

  27. Niewiadomska G, Baksalerska-Pazera M, Lenarcik I, Riedel G (2006) Compartmental protein expression of Tau, GSK-3b and TrkA in cholinergic neurons of aged rats. J Neural Transm 113:1733–1746

    Article  PubMed  CAS  Google Scholar 

  28. Backman C, Rose GM, Bartus RT, Hoffer BJ, Mufson EJ, Granholm AC (1997) Carrier mediated delivery of NGF: alterations in basal forebrain neurons in aged rats revealed using antibodies against low and high affinity NGF receptors. J Comp Neurol 387:1–11

    Article  PubMed  CAS  Google Scholar 

  29. Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST (2003) Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26:233–242

    Article  PubMed  CAS  Google Scholar 

  30. Hamano T, Mutoh T, Tabira T, Araki W, Kuriyama M, Mihara T, Yano S, Yamamoto H (2005) Abnormal intracellular trafficking of high affinity nerve growth factor receptor, Trk, in stable transfectants expressing presenilin 1 protein. Brain Res Mol Brain Res 137:70–76

    Article  PubMed  CAS  Google Scholar 

  31. Fischer W, Sirevaag A, Wiegand SJ, Lindsay RM, Bjorklund A (1994) Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proc Natl Acad Sci USA 91:8607–8611

    Article  PubMed  CAS  Google Scholar 

  32. Martinez-Serrano A, Fischer W, Soderstrom S, Ebendal T, Bjorklund A (1996) Long-term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain. Proc Natl Acad Sci USA 93:6355–6360

    Article  PubMed  CAS  Google Scholar 

  33. Klein RL, Hirko AC, Meyers CA, Grimes JR, Muzyczka N, Meyer EM (2000) NGF gene transfer to intrinsic basal forebrain neurons increases cholinergic cell size and protects from age-related, spatial memory deficits in middle-aged rats. Brain Res 875:144–151

    Article  PubMed  CAS  Google Scholar 

  34. Ebert AD, Svendsen CN (2005) A new tool in the battle against Alzheimer’s disease and aging: ex vivo gene therapy. Rejuvenation Res 8:131–134

    Article  PubMed  CAS  Google Scholar 

  35. Tuszynski MH, Thal L, Pay M, Salmon DP, Hoi Sang U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  PubMed  CAS  Google Scholar 

  36. Parent MB, Baxter MG (2004) Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn Mem 11:9–20

    Article  PubMed  Google Scholar 

  37. Berger-Sweeney J, Heckers S, Mesulam MM, Wiley RG, Lappi DA, Sharma M (1994) Differential effects on spatial navigation of immunotoxin-induced cholinergic lesions of the medial septal area and nucleus basalis magnocellularis. J Neurosci 14:4507–4519

    PubMed  CAS  Google Scholar 

  38. Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley RG (1994) Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 14:5986–5995

    PubMed  CAS  Google Scholar 

  39. Galani R, Lehmann O, Bolmont T, Aloy E, Bertrand F, Lazarus C, Jeltsch H, Cassel JC (2002) Selective immunolesions of CH4 cholinergic neurons do not disrupt spatial memory in rats. Physiol Behav 76:75–90

    Article  PubMed  CAS  Google Scholar 

  40. Ridley RM, Murray TK, Johnson JA, Baker HF (1986) Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: modification by cholinergic drugs. Brain Res 376:108–116

    Article  PubMed  CAS  Google Scholar 

  41. Ridley RM, Baker HF, Leow-Dyke A, Cummings RM (2005) Further analysis of the effects of immunotoxic lesions of the basal nucleus of Meynert reveals substantial impairment on visual discrimination learning in monkeys. Brain Res Bull 65:433–442

    Article  PubMed  CAS  Google Scholar 

  42. Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 75:13–25

    Article  PubMed  CAS  Google Scholar 

  43. Veng LM, Granholm AC, Rose GM (2003) Age-related sex differences in spatial learning and basal forebrain cholinergic neurons in F344 rats. Physiol Behav 80:27–36

    PubMed  CAS  Google Scholar 

  44. Driscoll I, Sutherland RJ (2005) The aging hippocampus: navigating between rat and human experiments. Rev Neurosci 16:87–121

    PubMed  CAS  Google Scholar 

  45. Wilson IA, Ikonen S, Gureviciene I, McMahan RW, Gallagher M, Eichenbaum H, Tanila H (2004) Cognitive aging and the hippocampus: how old rats represent new environments. J Neurosci 24:3870–3878

    Article  PubMed  CAS  Google Scholar 

  46. Arnaiz SL, D’Amico G, Paglia N, Arismendi M, Basso N, del Rosario Lores Arnaiz M (2004) Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition. Mol Aspects Med 25:91–101

    Article  PubMed  CAS  Google Scholar 

  47. Biggan SL, Ingles JL, Beninger RJ (1996) Scopolamine differentially affects memory of 8- and 16-month-old rats in the double Y-maze. Neurobiol Aging 17:25–30

    Article  PubMed  CAS  Google Scholar 

  48. Blokland A, Sik A, van der Staay FJ (2004) Delayed non-matching to position performance in aged hybrid Fischer 344 × brown Norway rats: a longitudinal study. Brain Res Bull 64:39–46

    Article  PubMed  CAS  Google Scholar 

  49. Barense MD, Fox MT, Baxter MG (2002) Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. Learn Mem 9:191–201

    Article  PubMed  Google Scholar 

  50. Muir JL, Fischer W, Bjorklund A (1999) Decline in visual attention and spatial memory in aged rats. Neurobiol Aging 20:605–615

    Article  PubMed  CAS  Google Scholar 

  51. Quirion R, Wilson A, Rowe W, Aubert I, Richard J, Doods H, Parent A, White N, Meaney MJ (1995) Facilitation of acetylcholine release and cognitive performance by an M(2)-muscarinic receptor antagonist in aged memory-impaired. J Neurosci 15:1455–1462

    PubMed  CAS  Google Scholar 

  52. Paban V, Chambon C, Jaffard M, Alescio-Lautier B (2005) Behavioral effects of basal forebrain cholinergic lesions in young adult and aging rats. Behav Neurosci 119:933–945

    Article  PubMed  Google Scholar 

  53. Chudasama Y, Dalley JW, Nathwani F, Bouger P, Robbins TW (2004) Cholinergic modulation of visual attention and working memory: dissociable effects of basal forebrain 192-IgG-saporin lesions and intraprefrontal infusions of scopolamine. Learn Mem 11:78–86

    Article  PubMed  Google Scholar 

  54. Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 48:98–111

    Article  PubMed  CAS  Google Scholar 

  55. Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  PubMed  CAS  Google Scholar 

  56. Waite JJ, Wardlow ML, Power AE (1999) Deficit in selective and divided attention associated with cholinergic basal forebrain immunotoxic lesion produced by 192-saporin; motoric/sensory deficit associated with Purkinje cell immunotoxic lesion produced by OX7-saporin. Neurobiol Learn Mem 71:325–352

    Article  PubMed  CAS  Google Scholar 

  57. Pappas BA, Payne KB, Fortin T, Sherren N (2005) Neonatal lesion of forebrain cholinergic neurons: further characterization of behavioral effects and permanency. Neuroscience 133:485–492

    Article  PubMed  CAS  Google Scholar 

  58. Thinus-Blanc C, Save E, Poucet B, Buhot MC (1991) The effects of reversible inactivations of the hippocampus on exploratory activity and spatial memory. Hippocampus 1:365–371

    Article  PubMed  CAS  Google Scholar 

  59. Scali C, Giovannini MG, Prosperi C, Bartolini L, Pepeu G (1997) Tacrine administration enhances extracellular acetylcholine in vivo and restores the cognitive impairment in aged rats. Pharmacol Res 36:463–469

    Article  PubMed  CAS  Google Scholar 

  60. Bartolini L, Casamenti F, Pepeu G (1996) Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions. Pharmacol Biochem Behav 53:277–283

    Article  PubMed  CAS  Google Scholar 

  61. Mackintosh NJ (1965) Selective attention in animal discrimination learning. Psychol Bull 64:124–150

    Article  PubMed  CAS  Google Scholar 

  62. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1239–1247

    Article  PubMed  Google Scholar 

  63. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, Australia

    Google Scholar 

  64. Save E, Poucet B, Foreman N, Buhot MC (1992) Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav Neurosci 106:447–456

    Article  PubMed  CAS  Google Scholar 

  65. Boguszewski P, Zagrodzka J (2002) Emotional changes related to age in rats—a behavioral analysis. Behav Brain Res 133:323–332

    Article  PubMed  Google Scholar 

  66. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  67. Save E, Poucet B, Foreman N, Buhot MC (1992) Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav Neurosci 106:447–456

    Article  PubMed  CAS  Google Scholar 

  68. Platano D, Bertoni-Freddari C, Fattoretti P, Giorgetti B, Grossi Y, Balietti M, Casoli T, Di Stefano G, Aicardi G (2006) Structural synaptic remodeling in the perirhinal cortex of adult and old rats following object-recognition visual training. Rejuvenation Res 9:102–106

    Article  PubMed  CAS  Google Scholar 

  69. Moses SN, Cole C, Driscoll I, Ryan JD (2005) Differential contributions of hippocampus, amygdala and perirhinal cortex to recognition of novel objects, contextual stimuli and stimulus relationships. Brain Res Bull 67:62–76

    Article  PubMed  Google Scholar 

  70. Bussey TJ, Muir JL, Aggleton JP (1999) Functionally dissociating aspects of event memory: the effects of combined perirhinal and postrhinal cortex lesions on object and place memory in the rat. J Neurosci 19:495–502

    PubMed  CAS  Google Scholar 

  71. Wilson FA, Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958

    Article  PubMed  CAS  Google Scholar 

  72. Kesner RP, Hunt ME, Williams JM, Long JM (1996) Prefrontal cortex and working memory for spatial response, spatial location, and visual object information in the rat. Cereb Cortex 6:311–318

    PubMed  CAS  Google Scholar 

  73. Burwell RD, Saddoris MP, Bucci DJ, Wiig KA (2004) Corticohippocampal contributions to spatial and contextual learning. J Neurosci 24:3826–3836

    Article  PubMed  CAS  Google Scholar 

  74. Moses SN, Cole C, Ryan JD (2005) Relational memory for object identity and spatial location in rats with lesions of perirhinal cortex, amygdala and hippocampus. Brain Res Bull 65:501–512

    Article  PubMed  Google Scholar 

  75. Vannucchi MG, Scali C, Kopf SR, Pepeu G, Casamenti F (1997) Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 79:837–846

    Article  PubMed  CAS  Google Scholar 

  76. Scali C, Casamenti F, Pazzagli M, Bartolini L, Pepeu G (1994) Nerve growth factor increases extracellular acetylcholine levels in the parietal cortex and hippocampus of aged rats and restores object recognition. Neurosci Lett 170:117–120

    Article  PubMed  CAS  Google Scholar 

  77. Casamenti F, Scali C, Giovannelli L, Faussone-Pellegrini MS, Pepeu G (1994) Effect of nerve growth factor and GM1 ganglioside on the recovery of cholinergic neurons after a lesion of the nucleus basalis in aging rats. J Neural Transm Park Dis Dement Sect 7:177–193

    Article  PubMed  CAS  Google Scholar 

  78. De Rosa R, Garcia AA, Braschi C, Capsoni S, Maffei L, Berardi N, Cattaneo A (2005) Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA 102:3811–3816

    Article  PubMed  CAS  Google Scholar 

  79. Wise SP, Desimone R (1988) Behavioral neurophysiology: insights into seeing and grasping. Science 242:736–741

    Article  PubMed  CAS  Google Scholar 

  80. Uncapher MR, Rugg MD (2005) Effects of divided attention on fMRI correlates of memory encoding. J Cogn Neurosci 17:1923–1935

    Article  PubMed  Google Scholar 

  81. Hester R, Garavan H (2005) Working memory and executive function: the influence of content and load on the control of attention. Mem Cognit 33:221–233

    PubMed  Google Scholar 

  82. Mackintosh NJ (1965) Incidental cue learning in rats. Q J Exp Psychol 17:292–300

    Article  PubMed  CAS  Google Scholar 

  83. Rick JT, Whittle KL, Cross SH (1981) Disruption and facilitation of cue discrimination in the rat by cholinergic agents. Neuropharmacology 20:747–752

    Article  PubMed  CAS  Google Scholar 

  84. DiMattia BD, Kesner RP (1988) Spatial cognitive maps: differential role of parietal cortex and hippocampal formation. Behav Neurosci 102:471–480

    Article  PubMed  CAS  Google Scholar 

  85. Kesner RP, Farnsworth G, Kametani H (1991) Role of parietal cortex and hippocampus in representing spatial information. Cereb Cortex 1:367–373

    PubMed  CAS  Google Scholar 

  86. Gaffan EA, Bannerman DM, Healey AN (2003) Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required. Hippocampus 13:445–460

    Article  PubMed  CAS  Google Scholar 

  87. Craft TK, Mahoney JH, Devries AC, Sarter M (2005) Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance. Eur J Neurosci 21:3117–3132

    Article  PubMed  Google Scholar 

  88. Miyagawa H, Hasegawa M, Fukuta T, Amano M, Yamada K, Nabeshima T (1998) Dissociation of impairment between spatial memory, and motor function and emotional behavior in aged rats. Behav Brain Res 91:73–81

    Article  PubMed  CAS  Google Scholar 

  89. Li JW, Watanabe M, Fujisawa Y, Shibuya T (1995) Relation between age-related changes in hyper-emotionality and serotonergic neuronal activities in the rat limbic system. Nihon Shinkei Seishin Yakurigaku Zasshi 15:231–238

    PubMed  CAS  Google Scholar 

  90. Niewiadomska G, Wyrzykowska J, Chechlacz M (2000) Does senile impairment of cholinergic system in rats concern only disturbances in cholinergic phenotype or the progressive degeneration of neuronal cell bodies? Acta Biochim Pol 47:313–330

    PubMed  CAS  Google Scholar 

  91. Blesch A, Conner J, Pfeifer A, Gasmi M, Ramirez A, Britton W, Alfa R, Verma I, Tuszynski MH (2005) Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Mol Ther 11:916–925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant No. 2 PO5A121 28 from the Ministry of Scientific Research and Information Technology of Poland to Grazyna Niewiadomska and statutory grant to the Nencki Institute. We thank Dr Pawel Boguszewski for his permission to use the software originally developed by him for behavioral analysis and Dr Gernot Riedel for his helpful comments on initial drafts of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Niewiadomska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niewiadomska, G., Baksalerska-Pazera, M., Gasiorowska, A. et al. Nerve Growth Factor Differentially Affects Spatial and Recognition Memory in Aged Rats. Neurochem Res 31, 1481–1490 (2006). https://doi.org/10.1007/s11064-006-9209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9209-5

Keywords

Navigation