Skip to main content
Log in

Paraquat-induced Oxidative Stress in Drosophila melanogaster: Effects of Melatonin, Glutathione, Serotonin, Minocycline, Lipoic Acid and Ascorbic Acid

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The efficacy of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid in counteracting the toxicity of paraquat in Drosophila melanogaster was examined. Male Oregon wild strain flies were fed for 5 days with control food or food containing the test substance. They were transferred in groups of five to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival was determined 24 and 48 h later. All the substances assayed increased the survival of D. melanogaster. At equimolar concentrations (0.43 mM) melatonin was more effective than serotonin, lipoic acid and ascorbic acid. However, lower concentrations of glutathione (0.22 mM) and minocycline (0.05 mM) were as efficient as melatonin. The highest survival rate (38.6%) after 48 h of paraquat treatment was found with 2.15 mM of lipoic acid. No synergistic effect of melatonin with glutathione, serotonin, minocycline, lipoic acid and ascorbic acid was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sittipunt C (2005) Paraquat poisoning. Respir Care 50:383–385

    PubMed  Google Scholar 

  2. Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

    Article  PubMed  CAS  Google Scholar 

  3. Smith LL, Rose MS, Wyatt I (1978) The pathology and biochemistry of paraquat. Ciba Found Symp 65:321–341

    PubMed  Google Scholar 

  4. Honore P, Hantson P, Fauville JP, Peters A, Manieu P (1994) Paraquat poisoning “state of the art”. Acta Clin Belg 49:220–228

    PubMed  CAS  Google Scholar 

  5. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  6. Shida CS, Castrucci AMI, Freund MT (1994) High solubility of melatonin in aqueous medium. J Pineal Res 16:198–201

    PubMed  CAS  Google Scholar 

  7. Tan DX, Reiter RJ, Chen LD, Poeggeler B, Manchester LC, Barlow-Walden LR (1994) Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis 15:215–218

    PubMed  CAS  Google Scholar 

  8. Anderson ME (1997) Glutathione and glutathione delivery compounds. In: Sies H (eds.), Antioxidants in disease, mechanisms and therapy. Academic, San Diego, pp 65–78

    Google Scholar 

  9. Schafer FQ, Buettner GR (2001) Redox environment of cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  10. Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, Mocket RJ, Rebrin I, Hubbard JG, Sohal RS (2005) Overexpression of glutamate–cysteine ligase extends life span in Drosophila melanogaster. J Biol Chem 280:37331–37338

    Article  PubMed  CAS  Google Scholar 

  11. Miyachi Y, Yoshioka A, Imamura S, Niwa Y (1986) Effect of antibiotics on the generation of reactive oxygen species. J Invest Dermatol 86:449–453

    Article  PubMed  CAS  Google Scholar 

  12. Lin S, Zhang Y, Dodel R, Farlow MR, Paul SM, Du Y (2001) Minocycline blocks nitric oxide-induced neurotoxicity by inhibition of p38 MAP kinase in rat cerebellar neurons. Neurosci Lett 315:61–64

    Article  PubMed  CAS  Google Scholar 

  13. Coleman CM, Neckameyer WS (2004) Substrate regulation of serotonin and dopamine synthesis in Drosophila. Invert Neurosci 5:85–96

    Article  PubMed  CAS  Google Scholar 

  14. Coleman CM, Neckameyer WS (2005) Serotonin synthesis by two distinct enzymes in Drosophila melanogaster. Arch Insect Biochem Physiol 59:12–31

    Article  PubMed  CAS  Google Scholar 

  15. Herraiz T, Galisteo J (2004) Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic Res 38:323–331

    Article  PubMed  CAS  Google Scholar 

  16. Wollin SD, Jones PJ (2003) Alpha-lipoic acid and cardiovascular disease. J Nutr 133:3327–3330

    PubMed  CAS  Google Scholar 

  17. Yi X, Maeda N (2005) Endogenous production of lipoic acid is essential for mouse development. Mol Cell Biol 25:8387–8392

    Article  PubMed  CAS  Google Scholar 

  18. Kim DJ, Kim KH, Lee HH, Lee SJ, Ha JY, Yoon HJ, Suh SW (2005) Crystal structure of lipoate-protein ligase A bound with the activated intermediate: insights into interaction with lipoyl domains. J Biol Chem 280:38081–38089

    Article  PubMed  CAS  Google Scholar 

  19. Reed DJ (1993) Interactions of vitamin E, ascorbic acid, and glutathione in protection against oxidative damage. In: Packer L, Fuchs J (eds) Vitamin E in health and disease. Marcell Dekker, New York, pp 264–282

    Google Scholar 

  20. Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    Article  PubMed  CAS  Google Scholar 

  21. Gitto E, Tan DX, Reiter RJ, Karbownik M, Manchester LC, Cuzzocrea S, Fulia F, Barberi I (2001) Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrioxamine (desferoxamine) in rat liver homogenates. J Pharm Pharmacol 53:1393–1401

    Article  PubMed  CAS  Google Scholar 

  22. Motulsky H (1995) Intuitive biostatistics. Oxford University Press, New York

    Google Scholar 

  23. Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson’s disease phenotype. Eur J Neurosci 18:589–600

    Article  PubMed  Google Scholar 

  24. McCormack AL, Atienza JG, Johnston LC, Andersen JK, Vu S, Di Monte DA (2005) Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochem 93:1030–1037

    Article  PubMed  CAS  Google Scholar 

  25. Morita K, Tokunaga I, Kubo S (1999) Cytotoxic effect of paraquat on rat C6 glioma cells: evidence for the possibility of non-oxidative damage to the cells. Jpn J Pharmacol 79:121–124

    Article  PubMed  CAS  Google Scholar 

  26. Bonneh-Barkay D, Reaney SH, Langston WJ, Di Monte DA (2005) Redox cycling of the herbicide paraquat in microglial cultures. Brain Res Mol Brain Res 134:52–56

    Article  PubMed  CAS  Google Scholar 

  27. Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Richfield EK, Buckley B, Mirochnit-Chenko O (2005) Overexpression of peroxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson’s disease phenotype. J Biol Chem 280:22530–22539

    Article  PubMed  CAS  Google Scholar 

  28. Reiter RJ, Tang L, Garcia JJ, Muños-Hoyos A (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60:2255–2271

    Article  PubMed  CAS  Google Scholar 

  29. Coto-Montes A, Hardeland R (1999) Antioxidative effects of melatonin in Drosophila melanogaster: antagonization of damage induced by the inhibition of catalase. J Pineal Res 27:154–158

    PubMed  CAS  Google Scholar 

  30. Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow-Walden L, Acuña-Castroviejo D, Menéndez-Pelaez A (1995) Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res 19:111–115

    PubMed  CAS  Google Scholar 

  31. Reiter RJ, Acuña-Castroviejo D, Tan DX, Burkhardt S (2001) Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 939:200–215

    Article  PubMed  CAS  Google Scholar 

  32. Urata Y, Honma S, Goto S, Todoroki S, Iida T, Cho S, Honma K, Kondo T (1999) Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 27:838–847

    Article  PubMed  CAS  Google Scholar 

  33. Finocchiaro L, Callebert J, Launay JM, Jallon JM (1988) Melatonin biosynthesis in Drosophila: its nature and its effects. J Neurochem 50:382–387

    Article  PubMed  CAS  Google Scholar 

  34. Hinterman E, Jeno P, Meyer UA (1995) Isolation and characterization of an arylalkylamine N-acetyltransferase from Drosophila melanogaster. FEBS Lett 375:148–150

    Article  Google Scholar 

  35. Bonilla E, Medina-Leendertz S, Díaz S (2002) Extensión of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Exp Gerontol 37:629–638

    Article  PubMed  CAS  Google Scholar 

  36. Roychowdhury S, Wolf G, Keilhoff G, Horn TF (2003) Cytosolic and mitochondrial glutathione in microglial cells are differentially affected by oxidative nitrosactive stress. Nitric Oxide 8:39–47

    Article  PubMed  CAS  Google Scholar 

  37. Rebrin I, Bayne AC, Mockett RJ, Orr WC, Sohal RS (2004) Free aminothiols, glutathione redox state and protein mixed disulphides in aging Drosophila melanogaster. Biochem J 382:131–136

    Article  PubMed  CAS  Google Scholar 

  38. Arking R, Buck S, Berrios A, Dwyer S, Baker GT 3rd (1991) Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 12:362–370

    Article  PubMed  CAS  Google Scholar 

  39. Kupkova Z, Cerna H, Lojek A, Ciz M, Benes L (2004) Determination of the antioxidant activity of potential scavengers of nitric oxide. Ceska Slov Farm 53:310–313

    PubMed  CAS  Google Scholar 

  40. Huether G, Fettkotter I, Keilhoff G, Wolf G (1997) Serotonin acts as a radical scavenger and is oxidized to a dimmer during the respiratory burst of activated microglia. J Neurochem 69:2096–2101

    Article  PubMed  CAS  Google Scholar 

  41. Matuszak Z, Bilska MA, Reszka KJ, Chignell CF, Bilski P (2003) Interaction of singlet molecular oxygen with melatonin and related indoles. Photochem Photobiol 78:449–455

    Article  PubMed  CAS  Google Scholar 

  42. Lin S, Wei X, Xu Y, Yan C, Dodel R, Zhang Y, Liu J, Klaunig JE, Farlow M, Du Y (2003) Minocycline blocks 6-hydroxydopamine-induced neurotoxicity and free radical production in rat cerebellar granule neurons. Life Sci 72:1635–1641

    Article  PubMed  CAS  Google Scholar 

  43. Lee SM, Yune TY, Kim SJ, Kim YC, Oh YJ, Markelonin GJ, Oh TH (2004) Minocycline inhibits apoptotic cell death via attenuation of TNF-alpha expression following iNOS/NO induction by lipopolysaccharide in neuron/glia co-cultures. J Neurochem 91:568–578

    Article  PubMed  CAS  Google Scholar 

  44. Bauer JH, Goupil S, Garber SB, Helfand SL (2004) An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci USA 31:12980–12985

    Article  Google Scholar 

  45. Arivazhagan P, Ayusawa D, Panneerselvam C (2006) Protective efficacy of alpha-lipoic acid on acetylcholinesterase activity in aged rat brain regions. Rejuvenation Res 9:198–201

    Article  PubMed  CAS  Google Scholar 

  46. Amudha G, Josephine A, Varalakshmi P (2006) Role of lipoic acid in reducing the oxidative stress induced by cyclosporine A. Clin Chim Acta 372:134–139

    Article  PubMed  CAS  Google Scholar 

  47. Louhelainen M, Merasto S, Finckenberg P, Lapatto R, Cheng ZJ, Mervaala EM (2006) Lipoic acid supplementation prevents cyclosporine-induced hypertension and nephrotoxicity in spontaneously hypertensive rats. J Hypertens 24:947–956

    Article  PubMed  CAS  Google Scholar 

  48. Bilska A, Wlodek L (2005) Lipoic acid—the drug of the future. Pharmacol Rep 57:570–577

    PubMed  CAS  Google Scholar 

  49. Ziegler D (2004) Thioctic acid for patients with symptomatic diabetic polyneuropathy: a critical review. Treat Endocrinol 3:173–189

    Article  PubMed  CAS  Google Scholar 

  50. Negrisanu G, Rosu M, Bolte B, Lefter D, Dabelea D (1999) Effects of 3-month treatment with the antioxidant alpha-lipoic acid in diabetic peripheral neuropathy. Rom J Intern Med 37:297–306

    PubMed  CAS  Google Scholar 

  51. Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM (2004) Lipoic acid as a potential therapy for chronic disease associated with oxidative stress. Curr Med Chem 11:1135–1146

    PubMed  CAS  Google Scholar 

  52. Ernst A, Stolzing A, Sandig G, Grune T (2004) Antioxidants effectively prevent oxidation-induced protein damage in OLN 93 cells. Arch Biochem Biophys 421:54–60

    Article  PubMed  CAS  Google Scholar 

  53. Massie HR, Shumway ME, Whitney SJ, Sternick SM, Aiello VR (1991) Ascorbic acid in Drosophila and changes during aging. Exp Gerontol 26:487–494

    Article  PubMed  CAS  Google Scholar 

  54. Hoda Q, Sinha SP (1991) Minimisation of cytogenetic toxicity of malathion by vitamin C. J Nutr Sci Vitaminol (Tokyo) 37:329–339

    CAS  Google Scholar 

  55. Hoda Q, Sinha SP (1993) Vitamin C-mediated minimization of Rogor-induced genotoxicity. Mutat Res 299:29–36

    Article  PubMed  CAS  Google Scholar 

  56. Kaya B, Creus A, Velazquez A, Yanikoghu A, Marcos R (2002) Genotoxicity is modulated by ascorbic acid. Studies using the wing spot test in Drosophila. Mutat Res 520:93–101

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Bonilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonilla, E., Medina-Leendertz, S., Villalobos, V. et al. Paraquat-induced Oxidative Stress in Drosophila melanogaster: Effects of Melatonin, Glutathione, Serotonin, Minocycline, Lipoic Acid and Ascorbic Acid. Neurochem Res 31, 1425–1432 (2006). https://doi.org/10.1007/s11064-006-9194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9194-8

Keywords

Navigation