Skip to main content
Log in

Acrylamide Alters Cytoskeletal Protein Level in Rat Sciatic Nerves

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Occupational exposure and experimental intoxication with acrylamide (ACR) produce neuropathy characterized by nerve degeneration. To investigate the mechanism of ACR-induced neuropathy, male adult Wistar rats were given ACR (20, 40 mg/kg i.p. 3 days/week) for 8 weeks. Sciatic nerves were Triton-extracted and centrifuged at a high speed (100,000 × g) to yield pellet and supernatant fractions. The contents of six cytoskeletal proteins (NF-L, NF-M, NF-H, α-tubulin, β-tubulin, and β-actin) in both fractions were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Results showed that the three neurofilament (NF) subunits (NF-L, NF-M, NF-H) in both the pellet and the supernatant fraction decreased significantly (P < 0.01) in the high-dosing group, except for NF-M in the pellet. α-tubulin, β-tubulin, and β-actin increased significantly in the supernatant (P < 0.01), whereas both α-tubulin and β-tubulin decreased significantly in the pellet (P < 0.01). However, β-actin was not altered significantly in the sciatic nerves pellet. These findings suggest that ACR altered the cytoskeletal protein level in sciatic nerve, which may be one of the molecular mechanisms of ACR-induced peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tareke E, Rydberg P, Karlesson P, Eriksson S, Tornqvist M (2000) Acrylamide: a cooking carcinogen? Chem Res Toxicol 13:517–522

    Article  PubMed  CAS  Google Scholar 

  2. LoPachin RM (2002) The role of fast axonal transport in acrylamide pathophysiology: mechanism or epiphenomenon? Neurotoxicology 23:253–257

    Article  PubMed  CAS  Google Scholar 

  3. Deng H, He F, Zhang S, Calleman CJ, Costa LG (1993) Quantitative measurements of vibration threshold in healthy adults and acrylamide workers. Int Arch Occup Environ Health 65:53–56

    Article  PubMed  CAS  Google Scholar 

  4. Edwards PM, Parker VH (1977) A simple, sensitive, and objective method for early assessment of acrylamide neuropathy in rats. Toxicol Appl Pharmacol 40:589–591

    Article  PubMed  CAS  Google Scholar 

  5. Spencer PS, Schaumburg HH (1974) A review of acrylamide neurotoxicity. Part II, experimental animal neurotoxicity and pathologic mechanisms. Can J Neurol Sci 1:170–192

    Google Scholar 

  6. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    PubMed  CAS  Google Scholar 

  7. Ramaekers FC, Bosman FT (2004) The cytoskeleton and disease. J Pathol 204:351–354

    Article  PubMed  CAS  Google Scholar 

  8. Lee MK, Cleveland DW (1996) Neuronal intermediate filaments. Annu Rev Neurosci 19:187–217

    Article  PubMed  CAS  Google Scholar 

  9. LoPachin RM, Lehning EJ (1994) Acrylamide-induced distal axon degeneration: a proposed mechanism of action. Neurotoxicology 15:247–260

    PubMed  CAS  Google Scholar 

  10. Gold BG, Griffin JW, Price DL (1992) Somatofugal axonal atrophy precedes development of axonal degeneration in acrylamide neuropathy. Arch Toxicol 66:57–66

    Article  PubMed  CAS  Google Scholar 

  11. Tandrup T, Jakobsen J (2002) Long-term acrylamide intoxication induces atrophy of dorsal root ganglion A-cells and of myelinated sensory axons. J Neurocytol 31:79–87

    Article  PubMed  CAS  Google Scholar 

  12. Kjuus H, Goffeng LO, Heier MS, Sjoholm H, Ovrebo S, Skaug V, Paulsson B, Tornqvist M, Brudal S (2004) Effects on the peripheral nervous system of tunnel workers exposed to acrylamide and N-methylolacrylamide. Scand J Work Environ Health 30:21–29

    PubMed  CAS  Google Scholar 

  13. Le Quesne PM (1985) Clinical and morphological findings in acrylamide toxicity. Neurotoxicology 6:17–24

    PubMed  CAS  Google Scholar 

  14. LoPachin RM, Ross JF, Lehning EJ (2002) Nerve terminals as the primary site of acrylamide action: a hypothesis. Neurotoxicology 23:43–60

    Article  PubMed  CAS  Google Scholar 

  15. Sickles DW, Stone JD, Friedman MA (2002) Fast axonal transport: a site of acrylamide neurotoxicity? Neurotoxicology 23:223–251

    Article  PubMed  CAS  Google Scholar 

  16. LoPachin RM, Ross JF, Reid ML, Das S, Mansukhani S, Lehning EJ (2002) Neurological evaluation of toxic axonopathies in rats: acrylamide and 2, 5-hexanedione. Neurotoxicology 23:95–110

    Article  PubMed  CAS  Google Scholar 

  17. Xie K, Gupta RP, Abou-Donia MB (2001) Alteration in cytoskeletal protein levels in sciatic nerve on post-treatment of diisopropyl phosphorofluoridate (DFP)-treated hen with phenylmethylsulfonyl fluoride. Neurochem Res 26:235–243

    Article  PubMed  CAS  Google Scholar 

  18. Uchida A,Tsuda M, Tashiro T, Komiya Y, Yorifuji H, Kishimoto T, Hisanaga S (2004) Morphological and biochemical changes of neurofilaments in aged rat sciatic nerve axons. J Neurochem 88:735–745

    Article  PubMed  CAS  Google Scholar 

  19. Zhang T, Zhao X, Zhu Z, Yu L, Han X, Zhang C, Xie K (2005) 2,5-Hexanedione induced decrease in cytoskeletal proteins of rat sciatic-tibial nerve. Neurochem Res 30:177–183

    Article  PubMed  Google Scholar 

  20. Shea TB, Dahl DC, Nixon RA, Fischer I (1997) Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. J Neurosci Res 48:515–523

    Article  PubMed  CAS  Google Scholar 

  21. Cohlberg JA, Hajarian H, Tran T, Alipourjeddi P, Noveen A (1995) Neurofilament protein heterotetramers as assembly intermediates. J Biol Chem 270:9334–9339

    Article  PubMed  CAS  Google Scholar 

  22. Shea TB, Sihag RK, Nixon RA (1990) Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastoma. J Neurochem 55:1784–1792

    Article  PubMed  CAS  Google Scholar 

  23. Ackerley S, Thornhill P, Grierson AJ, Brownlees J, Anerton BH, Leigh PN, Shaw CE, Miller CC (2003) Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495

    Article  PubMed  CAS  Google Scholar 

  24. Jacomy H, Zhu Q, Couillard-Despres S, Beaulieu JM, Julien JP (1999) Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J Neurochem 73:972–984

    Article  PubMed  CAS  Google Scholar 

  25. Lehning EJ, Jortner BS, Fox JH, Arezzo JC, Kitano T, LoPachin RM (2000) Diketone peripheral neuropathy: I. Quantitative morphometric analyses of axonal atrophy and swelling. Toxicol Appl Pharmacol 165:127–140

    Article  PubMed  CAS  Google Scholar 

  26. Zhao XL, Zhu ZP, Zhang TL, Zhang CL, Yu LH, Xie KQ (2004) Tri-ortho-cresyl phosphate (TOCP) decreases the levels of cytoskeletal proteins in hen sciatic nerve. Toxicol Lett 152:139–147

    PubMed  CAS  Google Scholar 

  27. Lehning EJ, Persaud A, Dyer KR, Jortner BS, LoPachin RM (1998) Biochemical and morphologic characterization of acrylamide peripheral neuropathy. Toxicol Appl Pharmacol 151:211–221

    Article  PubMed  CAS  Google Scholar 

  28. Muma NA, Slunt HH, Hoffman PN (1991) Postnatal increases in neurofilament gene expression correlate with the radial growth of axons. J Neurocytol 20:844–854

    Article  PubMed  CAS  Google Scholar 

  29. Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148:299–316

    Article  PubMed  CAS  Google Scholar 

  30. Elder GA, Friedrich VL Jr, Bosco P, Kang C, Gourov A, Tu PH, Lee VM, Lazzarini RA (1998) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol 141:727–739

    Article  PubMed  CAS  Google Scholar 

  31. Yamasaki H, Itakura C, Mizutani M (1991) Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol 82:427–434

    Article  PubMed  CAS  Google Scholar 

  32. Julien JP (1999) Neurofilament functions in health and disease. Curr Opin Neurobiol 9:554–560

    Article  PubMed  CAS  Google Scholar 

  33. Kriz J, Zhu Q, Julien JP, Padjen AL (2000) Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res 885:32–44

    Article  PubMed  CAS  Google Scholar 

  34. He FS, Zhang SL, Wang HL, Li G, Zhang ZM, Li FL, Dong XM, Hu FR (1989) Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scand J Work Environ Health 15:125–129

    PubMed  CAS  Google Scholar 

  35. Shea TB (2000) Microtubule motors, phosphorylation and axonal transport of neurofilaments. J Neurocytol 29:873–887

    Article  PubMed  CAS  Google Scholar 

  36. Yabe JT, Chan WK-H, Chylinski T, Lee S, Pimenta A, Shea TB (2001) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation and maturation. Cell Motil Cytoskeleton 48:61–83

    Article  PubMed  CAS  Google Scholar 

  37. Hartley CL, Anderson VE, Anderton BH, Robertson J (1997) Acrylamide and 2,5-hexanedione induce collapse of neurofilaments in SH-SY5Y human neuroblastoma cells to form perikaryal inclusion bodies. Neuropathol Appl Neurobiol 23:522–534

    Article  Google Scholar 

  38. Ho WH, Wang SM, Yin HS (2002) Acrylamide disturbs the subcellular distribution of GABAA receptor in brain neurons. J Cell Biochem 85:561–571

    Article  PubMed  CAS  Google Scholar 

  39. Endo H, Kittur S, Sabri MI (1994) Acrylamide alters neurofilament protein gene expression in rat brain. Neurochem Res 19:815–820

    Article  PubMed  CAS  Google Scholar 

  40. Yu S, Zhao X, Zhang T, Yu L, Li S, Cui N, Han X, Zhu Z, Xie K (2005) Acrylamide-induced changes in the neurofilament protein of rat cerebrum fractions. Neurochem Res 30:1079–1085

    Article  PubMed  CAS  Google Scholar 

  41. Gupta RP, Abou-Donia MB (1997) Acrylamide and carbon disulfide treatments increase the rate of rat brain tubulin polymerization. Mol Chem Neuropathol 30:223–237

    PubMed  CAS  Google Scholar 

  42. Perrone Capano C, Pernas-Alonso R, di Porzio U (2001) Neurofilament homeostasis and motoneurone degeneration. Bioessays 23:24–33

    Article  PubMed  CAS  Google Scholar 

  43. Yagihashi S, Kamijo M, Watanabe K (1990) Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin rats. Am J Pathol 136:1365–1373

    PubMed  CAS  Google Scholar 

  44. Liuzzi FJ, Bufton SM, Vinik AI (1998) Streptozotocin-induced diabetes mellitus causes changes in primary sensory neuronal cytoskeletal mRNA levels that mimic those caused by axotomy. Exp Neurol 154:381–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (No. 2002CB512907), and National Natural Science Fund of China (No. 30271138), and Young Excellence Fund of Shandong Province, China (No.02B5080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Son, F., Yu, J. et al. Acrylamide Alters Cytoskeletal Protein Level in Rat Sciatic Nerves. Neurochem Res 31, 1197–1204 (2006). https://doi.org/10.1007/s11064-006-9176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9176-x

Keywords

Navigation