Skip to main content
Log in

Decreased Creatine Kinase Activity Caused by Electroconvulsive Shock

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding its mechanism of action. Creatine kinase is a crucial enzyme for brain energy homeostasis, and a decrease of its activity has been associated with neuronal death. This work was performed in order to evaluate creatine kinase activity from rat brain after acute and chronic electroconvulsive shock. Results showed an inhibition of creatine kinase activity in hippocampus, striatum and cortex, after acute and chronic electroconvulsive shock. Our findings demonstrated that creatine kinase activity is altered by electroconvulsive shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Madsen TM, Treschow A, Bengzon J et al (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47:1043–1049

    Article  PubMed  CAS  Google Scholar 

  2. Rosen Y, Reznik I, Sluvis A et al (2003) The significance of the nitric oxide in eletro-convulsive therapy: a proposed neurophysiological mechanism. Med Hypotheses 60:424–429

    Article  PubMed  CAS  Google Scholar 

  3. American Psychiatric Association (1990) The practice of Eletroconvulsive Therapy: recommendations for Practice, Training, and Privilegina: a Task Force Report of the American Psychiatric Association. American Psychiatric Association Press, Washington

  4. The UK ECT Review Group (2003) Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. Lancet 361:799–808

    Article  Google Scholar 

  5. Abrams R (ed) (1992) Electroconvulsive therapy. Oxford University Press, New York

  6. Barichello T, Bonatto F, Agostinho FR et al (2004) Structure-related oxidative damage in rat brain after acute and chronic electroshock. Neurochem Res 29:1749–1753

    Article  PubMed  CAS  Google Scholar 

  7. Barichello T, Bonatto F, Feier G et al (2004) No evidence for oxidative damage in the hippocampus after acute and chronic electroshock in rats. Brain Res 1014:177–183

    Article  PubMed  CAS  Google Scholar 

  8. Devanand DP, Dwork AJ, Hutchinson ER et al (1994) Does ECT alter brain structure? Am J Psychiatry 151:957–970

    PubMed  CAS  Google Scholar 

  9. Gombos Z, Mendonça A, Cottrell GA et al (1999) Ketamine and phenobarbital do not reduce the evoked-potential enhancement induced by electroconvulsive shock seizures in the rat. Neurosci Lett 5:33–36

    Article  Google Scholar 

  10. Sackeim HA, Luber B, Katzman GP et al (1996) The effects of eletroconvulsive therapy on quantitative eletroencephalograms. Relationship to clinical outcome. Arch Gen Psychiatry 53:814–824

    PubMed  CAS  Google Scholar 

  11. Newman ME, Gur E, Shapira B et al (1998) Neurochemical mechanisms of action of ECS: evidence from in vivo studies. J ECT 14:153–171

    PubMed  CAS  Google Scholar 

  12. Bessman SP, Carpenter CL (1985) The creatine–creatine phosphate energy shuttle. Annu Rev Biochem 54:831–862

    Article  PubMed  CAS  Google Scholar 

  13. Schnyder T, Gross H, Winkler H et al (1991) Structure of the mitochondrial creatine kinase octamer: high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol 112:95–101

    Article  PubMed  CAS  Google Scholar 

  14. Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  15. Tomimoto H, Yamamoto K, Homburger HA et al (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol (Berl) 86:447–455

    CAS  Google Scholar 

  16. David S, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res 54:276–287

    Article  PubMed  CAS  Google Scholar 

  17. Aksenov M, Aksenova M, Butterfield DA et al (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    Article  PubMed  CAS  Google Scholar 

  18. Hamman BL, Bittl JA, Jacobus WE et al (1995) Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol 269:1030–1036

    Google Scholar 

  19. Gross WL, Bak MI, Ingwall JS et al (1996) Nitric oxide inhibits creatine kinase and regulates heart contractile reserve. Proc Natl Acad Sci USA 93:5604–5609

    Article  PubMed  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  21. Oliver IT (1955) A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 61:116–122

    PubMed  CAS  Google Scholar 

  22. Rosalki SB (1967) An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med 69:696–705

    PubMed  CAS  Google Scholar 

  23. Khuchua ZA, Qin W, Boero J et al (1998) Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 273:22990–22996

    Article  PubMed  CAS  Google Scholar 

  24. Schlattner U, Wallimann T (2000) Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem 275:17314–17320

    Article  PubMed  CAS  Google Scholar 

  25. Saks VA, Kuznetsov AV, Kupriyanov VV et al (1985) Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 260:7757–7764

    PubMed  CAS  Google Scholar 

  26. Nobler MS, Sackeim HA (1998) Mechanisms of action of electroconvulsive therapy: functional brain imaging studies. Psychiatry Annals 28:23–29

    Google Scholar 

  27. Nobler MS, Sackeim HA, Prohovnik I et al (1994) Regional cerebral blood flow in mood disorders, III: treatment and clinical response. Arch Gen Psychiatry 51:884–897

    PubMed  CAS  Google Scholar 

  28. Streck EL, Feier G, Búrigo M et al (2006) Effects of electroconvulsive seizures on Na+, K+-ATPase activity in the rat hippocampus. Unpublished data

  29. Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49:341–361

    Article  PubMed  CAS  Google Scholar 

  30. Gamaro GD, Streck EL, Matté C et al (2003) Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344

    Article  PubMed  CAS  Google Scholar 

  31. Erakovic V, Zupan G, Varljen J et al (2001) Altered activities of rat brain metabolic enzymes in electroconvulsive shock-induced seizures. Epilepsia 42:181–189

    Article  PubMed  CAS  Google Scholar 

  32. Webb MG, O’Donnell MP, Draper RJ et al (1984) Brain-type creatine phosphokinase serum levels before and after ECT. Br J Psychiatry 144:525–528

    Article  PubMed  CAS  Google Scholar 

  33. Burbaeva GS, Savushkina OK, Dmitrievm AD (1999) Brain isoforms of creatine kinase in health and mental disease: Alzheimer’s disease and schizophrenia. Vestn Ross Akad Med Nauk 1:20–24

    PubMed  Google Scholar 

  34. Ferreira GC, Viegas CM, Schuck PF et al (2005) Glutaric acid moderately compromises energy metabolism in rat brain. Int J Dev Neurosci 23:687–693

    Article  CAS  Google Scholar 

  35. Schuck PF, Rosa RB, Pettenuzzo LF et al (2004) Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int 45:661–667

    Article  PubMed  CAS  Google Scholar 

  36. Fleck RM, Junior VR, Giacomazzi J et al (2005) Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 46:391–397

    Article  PubMed  CAS  Google Scholar 

  37. Pilla C, Cardozo RF, Dornelles PK et al (2003) Kinetic studies on the inhibition of creatine kinase activity by branched-chain amino acids in the brain cortex of rats. Int J Dev Neurosci 21:145–151

    Article  PubMed  CAS  Google Scholar 

  38. Sackeim HA (2000) Memory and ECT: from polarization to reconciliation. J ECT 16:87–96

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq and UNESC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Búrigo, M., Roza, C.A., Bassani, C. et al. Decreased Creatine Kinase Activity Caused by Electroconvulsive Shock. Neurochem Res 31, 877–881 (2006). https://doi.org/10.1007/s11064-006-9091-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9091-1

Keywords

Navigation