Skip to main content

Advertisement

Log in

Glycosylation and Cell Surface Expression of Kv1.2 Potassium Channel are Regulated by Determinants in the Pore Region

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Voltage-gated K+ channels contain six membrane spanning segments and a pore-forming domain. We used site-directed mutation to examine the role of specific amino acids in the extracellular region of the pore in Kv1.2. When expressed in CHO cells, a K+ current was not observed for mutants S356A, S360A, T383A and T384A. However, coexpression of the Kvβ2 subunit and the S360A mutant resulted in a robust peak current. Immunocytochemistry for Kv1.2 showed staining throughout the cytoplasm in cells coexpressing the β2 and S360A, whereas only the perinuclear region was stained in cells expressing the S360A mutant. Western blotting revealed that the major immunoreactive protein in wild-type- and mutant-expressing cells is 60-kDa, but 87-kDa bands were also detected in cells expressing wild-type Kv1.2 and cells coexpressing β2and S360A. These results suggest that amino acids in the pore region help regulate ion permeability or cellular trafficking by affecting glycosylation of Kv1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RT-PCR:

reverse transcription-polymerase chain reaction

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

WT:

wild-type

DMEM:

Dulbecco’s modified Eagle’s medium

FCS:

fetal calf serum

EDTA:

ethylenediaminetetraacetic acid

PBS:

phosphate-buffered saline

PBST:

PBS containing 5% nonfat dry milk and 0.1% Tween 20

VGKC:

voltage-gated K+ channel

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethane sulfonic acid

References

  1. MacKinnon R (1991) Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350:232–235

    Article  PubMed  CAS  Google Scholar 

  2. Schulteis CT, Nagay N, Papazian DM (1996) Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric Shaker K+ channel. Biochemistry 35:12,133–12,140

    Article  CAS  Google Scholar 

  3. Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Ann Rev Neurosci 20:91–123

    Article  PubMed  CAS  Google Scholar 

  4. Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310

    Article  PubMed  CAS  Google Scholar 

  5. Hartmann HA, Kirsch GE, Drewe JA, Taglialatela M, Joho RH, Brown AM (1991) Exchange of conduction pathways between two related K+ channels. Science 251:942–944

    Article  PubMed  CAS  Google Scholar 

  6. Yellen G, Jurman ME, Abramson T, MacKinnon R (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251:939–942

    Article  PubMed  CAS  Google Scholar 

  7. Miller C (1991) 1990: Annus mirabilis of potassium channels. Science 252:1092–1096

    Article  PubMed  CAS  Google Scholar 

  8. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    Article  PubMed  CAS  Google Scholar 

  9. López-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1:61–71

    PubMed  Google Scholar 

  10. Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic β subunit: T1 assembly of voltage-dependent K+ channels. Science 289:123–127

    Article  PubMed  CAS  Google Scholar 

  11. Parcej DN, Scott VES, Dolly JO (1992) Oligomeric properties of α-dendrotoxin-sensitive potassium ion channels purified from bovine brain. Biochemistry 31:11,084–11,088

    Article  CAS  Google Scholar 

  12. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369:289–294

    Article  PubMed  CAS  Google Scholar 

  13. Shi G, Nakahira K, Hammond S, Rhodes KJ, Schecter LE, Trimmer JS (1996) β subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16:843–852

    Article  PubMed  CAS  Google Scholar 

  14. Sheng M, Liao YJ, Jan YN, Jan LY (1993) Presynaptic A-current based on geteromultimeric K+ channels detected in vivo. Nature 365:72–75

    Article  PubMed  CAS  Google Scholar 

  15. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Temple BL (1993) Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 365:75–79

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  16. Manganas LN, Trimmer JS (2000) Subunit composition determines Kv1 potassium channel surface expression. J Biol Chem 275:29,685–29,693

    Article  CAS  Google Scholar 

  17. Zhu J, Watanabe I, Gomez B, Thornhill WB (2001) Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the Golgi, and cell surface expression. J Biol Chem 276:39,419–39,427

    CAS  Google Scholar 

  18. Zhu J, Watanabe I, Gomez B, Thornhill WB (2003) Heteromeric Kv1 potassium channel expression. J Biol Chem 278:25,558–25,567

    CAS  Google Scholar 

  19. Manganas LN, Wang Q, Scannevin RH, Antonucci DE, Rhodes KJ, Trimmer JS (2001) Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc Natl Acad Sci USA 98:14,055–14,059

    Article  CAS  Google Scholar 

  20. Christie MJ, North RA, Osborne PB, Douglass J, Adelman JP (1990) Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned subunits. Neuron 4:405–411

    Article  PubMed  CAS  Google Scholar 

  21. McKinnon D (1989) Isolation of a cDNA clone coding for a putative second potassium channel indicates the existence of a gene family. J Biol Chem 264:8230–8236

    PubMed  CAS  Google Scholar 

  22. Nakahira K, Shi G, Rhodes KJ, Trimmer JS (1996) Selective interaction of voltage-gated K+ channel β-subunits with α-subunits. J Biol Chem 271:7084–7089

    Article  PubMed  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  24. Santacruz-Toloza L, Huang Y, John SA, Papazian DM (1994) Glycosylation of Shaker potassium channel protein in insect cell culture and in Xenopus oocytes. Biochemistry 33:5607–5613

    Article  PubMed  CAS  Google Scholar 

  25. Zhu J, Watanabe I, Poholek A, Koss M, Gomez B, Yan C, Recio-Pinto E, Thornhill WB (2003) Allowed N-glycosylation sites on the Kv1.2 potassium channel S1–S2 linker: implications for linker secondary structure and the glycosylation effect on channel function. Biochem J 375:769–775

    Article  PubMed  CAS  Google Scholar 

  26. Heinemann SH, Rettig J, Graack HR, Pongs O (1996) Functional characterization of Kv channel beta-subunits from rat brain. J Physiol 493:625–633

    PubMed  CAS  Google Scholar 

  27. Li D, Takimoto K, Levitan ES (2000) Surface expression of Kv1 channels is governed by a C-terminal motif. J Biol Chem 275:11,597–11,602

    CAS  Google Scholar 

  28. Zhu J, Watanabe I, Gomez B, Thornhill WB (2003) Trafficking of Kv1.4 potassium channels: interdependence of a pore region determinant and a cytoplasmic C-terminal VXXSL determinant in regulating cell-surface trafficking. Biochem J 375:761–768

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe I, Zhu J, Recio-Pinto E, Thornhill WB (2004) Glycosylation affects the protein stability and cell surface expression of Kv1.4 but not Kv1.1 potassium channels. J Biol Chem 279:8879–8885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. M. Furuta, N. Hachiya, and K. Kaneko of the Department of Cortical Function Disorders, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan for recombinant gene construction and for helpful discussions; Dr. Y. Kubo of Tokyo Medical and Dental University, Tokyo, Japan for CHO cells; Dr. J.P. Adelman of Oregon Health Sciences University, Portland, OR, USA for the RBK2/SP6S plasmid; Dr. J.S. Trimmer of State University of New York, Stony Brook, NY, USA for a subclone encoding the rat Kvβ2 protein in the pRGB4 vector; and Ms. R. Sato of Showa Pharmaceutical University for technical assistance. This work was supported by a grant-in-aid from the Ministry of Education, Science, and Culture of Japan (14572164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iku Utsunomiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, T., Utsunomiya, I., Ren, J. et al. Glycosylation and Cell Surface Expression of Kv1.2 Potassium Channel are Regulated by Determinants in the Pore Region. Neurochem Res 31, 589–596 (2006). https://doi.org/10.1007/s11064-006-9056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9056-4

Keywords

Navigation