Skip to main content

Advertisement

Log in

Toxicogenomic Studies of the Rat Brain at an Early Time Point Following Acute Sarin Exposure

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have studied sarin-induced global gene expression patterns at an early time point (2 h: 0.5×LD50) using Affymetrix Rat Neurobiology U34 chips and male Sprague–Dawley rats. A total of 46 genes showed statistically significant alterations from control levels. Three gene categories contained more of the altered genes than any other groups: ion channel (8 genes) and calcium channel and binding proteins (6 genes). Alterations were also found in the following gene groups: ATPases and ATP-based transporters (4), growth factors (4), G-protein-coupled receptor pathway-related molecules (3), neurotransmission and neurotransmitter transporters (3), cytoskeletal and cell adhesion molecules (2), hormones (2), mitochondria-associated proteins (2), myelin proteins (2), stress-activated molecules (2), cytokine (1), caspase (1), GABAnergic (1), glutamergic (1), immediate early gene (1), prostaglandin (1), transcription factor (1), and tyrosine phosphorylation molecule (1). Persistent alteration of the following genes also were noted: Arrb1, CaMKIIa, CaMKIId, Clcn5, IL-10, c-Kit, and Plp1, suggesting altered GPCR, kinase, channel, and cytokine pathways. Selected genes from the microarray data were further validated using relative RT-PCR. Some of those genes (GFAP, NF-H, CaMKIIa, Calm, and MBP) have been shown by other laboratories and ours, to be involved in the pathogenesis of sarin-induced pathology and organophosphate-induced delayed neurotoxicity (OPIDN). Induction of both proapoptotic (Bcl2l11, Casp6) and antiapoptotic (Bcl-X) genes, besides suppression of p21, suggest complex cell death/protection-related mechanisms operating early on. Principal component analysis (PCA) of the expression data confirmed that the changes in gene expression are a function of sarin exposure, since the control and treatment groups separated clearly. Our model (based on current and previous studies) indicates that both degenerative and regenerative pathways are activated early and contribute to the level of neurodegeneration at a later time, leading to neuro-pathological alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

ATP:

Adenosine Tri-Phosphate

BBB:

Blood–Brain-Barrier

CREB:

cAMP-Response Element Binding Protein

Calm:

Calmodulin

CaMKII:

Ca2+/Calmodulin-dependent Protein Kinase II

CaRE:

Calcium Response Element

cAMP:

Cyclic AMP

CBP:

CREB-Binding Protein

CNS:

Central Nervous System

CTF:

Constitutional Transcriptional Factors

CRE:

Cyclic-AMP Responsive Element

DEPC:

Diethylpyrocarbonate

DFP:

Diisopropyl Phosphorofluoridate

ERK:

Extra-cellular signal-Regulated Kinase

GFAP:

Glial Fibrillary Acidic Protein

HSP:

Heat Shock Proteins

IEG:

Immediate Early Gene

ITF:

Inducible Transcriptional Factor

JNK:

Jun-C N-terminal Kinase

MSK:

Mitogen and Stress activated Kinase

MAPK:

Mitogen Activated Protein Kinase

MBP:

Myelin Basic Protein

NF:

Neurofilament(s)

NF-H:

Neurofilament High molecular weight protein

OP:

Organophosphates

OPICN:

Organophosphorus ester-Induced Chronic Neurotoxicity

OPIDN:

Organophosphorus ester Induced Delayed Neurotoxicity

p-CREB:

Phospho-CREB

PCA:

Principle Component Analysis

PCD:

Programmed Cell Death

PKA:

Protein Kinase A

RT-PCR:

Reverse Transcriptase Polymerase Chain Reaction

SAPK:

Stress Activated Protein Kinase

SRE:

Serum Response Element

SRF:

Serum Response Factor

References

  1. Morita H, Yanagisawa N, Nakajima T, Shimizu M, Hirabayashi H, Okudera H, Nohara M, Midorikawa Y, Mimura S (1995) Sarin poisoning in Matsumoto, Japan. Lancet 14:334–336

    Google Scholar 

  2. Okumura T, Takasu N, Ishimatsu S, Miyanoki S, Mitsuhashi K, Kumada K, Tanaka K, Hinohara S (1995) Report on 640 victims of the Tokyo subway sarin attack. Ann Emerg Med 28:129–135

    Article  Google Scholar 

  3. Nagao M, Takatori T, Matsuda Y, Nakajima M, Niijima H, Iwase H, Iwadate K, Amano T (1997) Detection of sarin hydrolysis products from sarin-like organophosphorus agent-exposed human erythrocytes. J Chromatogr B Biomed Sci Appl 01(1):9–17

    Article  Google Scholar 

  4. Board DS (1994) Report of the Defense Science Board Task Force on Persian Gulf War Health Effects. Office of the Under Secretory of Defense for Acquisition and Technology, Washington, DC

    Google Scholar 

  5. Ray DE (1998) Chronic effects of low level exposure to anticholinesterases–a mechanistic review. Toxicol Lett 102–103:527–533

    Article  PubMed  Google Scholar 

  6. Smith MI, Elove E, Frazier WH (1930) The pharmacological action of certain phenol ester with special reference to the etiology of so-called ginger paralysis. Public Health Rep 45:2509–2524

    CAS  Google Scholar 

  7. Abou-Donia MB (1981) Organophosphorus ester-induced delayed neurotoxicity. Annu Rev Pharmacol Toxicol 21:511–548

    Article  PubMed  CAS  Google Scholar 

  8. Himuro K, Murayama S, Nishiyama K, Shinoe T, Iwase H, Nagao M, Takatori T, Kanazawa I (1998) Distal sensory axonopathy after sarin intoxication. Neurology 51(4):1195–1197

    PubMed  CAS  Google Scholar 

  9. Davies O, Holland PR (1972) Effect of oximes and atropine upon the development of delayed neurotoxic signs in chickens following poisoning with DFP and sarin. Biochem Pharmacol 21:3145–3151

    Article  PubMed  CAS  Google Scholar 

  10. Abou Donia MB (2003) Organophosphosphorus ester-induced chronic neurotoxicity. Atch Environ Health 58:484–487

    Article  CAS  Google Scholar 

  11. Masuda N, Takatsu M, Morinari H (1995) Sarin poisoning in Tokyo subway. Lancet 345:1446–1447

    Article  PubMed  CAS  Google Scholar 

  12. Sidell FR (1972) Soman and sarin: Clinical manifestations and treatment of accidental poisoning by organophosphates. Clin Toxicol (7):1–17

    Google Scholar 

  13. Duffy FH, Burchfiel JL, Bartels PH, Gaon M, Sim VM (1979) Long-term effects of an organophosphate upon the human electroencephalogram. Toxicol Appl Pharmacol 47(1):161–176

    Article  PubMed  CAS  Google Scholar 

  14. Kadar T, Shapira S, Cohen G, Sahar R, Alkalay D, Raveh L (1995) Sarin-induced neuropathology in rats. Hum Exp Toxicol 14(3):252–259

    Article  PubMed  CAS  Google Scholar 

  15. Abdel-Rahman A, Shetty AK, Abou-Donia MB (2002) Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: dose-response relationships. Neuroscience 113(3):721–741

    Article  PubMed  CAS  Google Scholar 

  16. Abou-Donia MB, Dechkovskaia AM, Goldstein LB, Bullman SL, Khan WA (2002) Sensorimotor deficit and cholinergic changes following coexposure with pyridostigmine bromide and sarin in rats. Toxicol Sci 66(1):148–158

    Article  PubMed  CAS  Google Scholar 

  17. Damodaran TV, Mecklai AA, Abou-Donia MB (2002) Sarin causes altered time course of mRNA expression of alpha tubulin in the central nervous system of rats . Neurochem Res 27(3):177–81

    Article  PubMed  CAS  Google Scholar 

  18. Damodaran TV, Bilska MA, Rahman AA, Abou-Doni MB (2002) Sarin causes early differential alteration and persistent overexpression in mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of rats. Neurochem Res 27(5):407–415

    Article  PubMed  CAS  Google Scholar 

  19. Damodaran TV, Jones KH, Patel AG, Abou-Donia MB (2003) Sarin (nerve agent GB)-induced differential expression of mRNA coding for the acetylcholinesterase gene in the rat central nervous system. Biochem Pharmacol 65(12):2041–2047

    Article  PubMed  CAS  Google Scholar 

  20. Damodaran TV, Patel AG, Dressman HA, Lin SA, Abou-Donia MB (2003) Acute sarin exposure-induces early and persistent altered gene expression in the nervous system: A microarray study-based model in rats. Toxicol Sci 72(S-1):151

    Google Scholar 

  21. Delmas V, Molina CA, Lalli E, de Groot R, Foulkes NS, Masquilier D, Sassone-Corsi P, (1994) Complexity and versatility of the transcriptional response to cAMP. Rev Physiol Biochem Pharmacol 124:1–28

    PubMed  CAS  Google Scholar 

  22. Hamadeh HK, Bushel PR, Jayadev S, Martin K, DiSorbo O, Sieber S, Bennett L, Tennant R, Stoll R, Barrett JC, Blanchard K, Paules RS, Afshari CA (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67(2):219–231

    Article  PubMed  CAS  Google Scholar 

  23. Hamadeh HK, Bushel PR, Jayadev S, DiSorbo O., Bennett L, Li L, Tennant R, Stoll R, Barrett JC, Paules RS, Blanchard K, Afshari CA (2002) Prediction of compound signature using high density gene expression profiling. Toxicol Sci 67(2):232–240

    Article  PubMed  CAS  Google Scholar 

  24. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98(1):31–36

    Article  PubMed  CAS  Google Scholar 

  25. Bobashev GV, Das S, Das A (2002) Experimental design for gene microarray experiments and differential expression analysis. In: Johnson KLSM (eds) Methods in microarray analysis II, Kluwer, Boston, MA

    Google Scholar 

  26. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler SK (1999) Basic Neurochemistry. Molecular, cellular and medical aspects. Lippincott-Raven, Philadelphia

    Google Scholar 

  27. Horikoshi T, Sakakibara M (2000) Quantification of relative mRNA expression in the rat brain using simple RT-PCR and ethidium bromide staining. J Neurosci Methods 99(1–2):45–51

    Article  PubMed  CAS  Google Scholar 

  28. Superarray Bioscience Corporation (2004) RT 2 End-point Gene Expression Assay Kits. User Manual, part # 1002 2.0:1–10

    Google Scholar 

  29. McGaughy J, Turchi J, Sarter M (1994) Crossmodal divided attention in rats: effects of chlordiazepoxide and scopolamine. Psychopharmacology (Berl) 115(1–2):213–220

    Article  CAS  Google Scholar 

  30. Brown D (1983) Slow cholinergic excitation-a mechanism fir increasing neuronal excitability. Trends Neurosci 6:302–306

    Article  Google Scholar 

  31. Friedman A, Kaufer D, Pavlovsky L, Soreq H (1998) Cholinergic excitation induces activity-dependent electrophysiological and transcriptional responses in hippocampal slices. J Physiol Paris 92(3–4):329–335

    Article  PubMed  CAS  Google Scholar 

  32. deGroot DM, Bierman EP, Bruijnzeel PL, Carpentier P, Kulig BM, Lallement G, Melchers BP, Philippens IH, Van Huygevoort AH (2001) Beneficial effects of TCP on soman intoxication in guinea pigs: Seizures, brain damage, and learning behavior. J Appl Tox 21:S57–S65

    Article  CAS  Google Scholar 

  33. McDonough JH, Shih TM (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 21(5):559–579

    Article  PubMed  CAS  Google Scholar 

  34. Solberg Y, Belkin M (1997) The role of excitotoxicity in organophosphorous nerve agents central poisoning. Trends Pharmacol Sci 18(6):183–185

    Article  PubMed  CAS  Google Scholar 

  35. Kaufer D, Friedman A, Seidman S, Soreq H (1999) Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem Biol Interact 119–120:349–360

    Article  PubMed  Google Scholar 

  36. Sivam SP, Nabeshima T, Lim DK, Hoskins B, Ho IK (1983) Diisopropylfluorophosphate and GABA synaptic function: effect on levels, enzymes, release and uptake in the rat striatum. Res Commun Chem Pathol Pharmacol 42(1):51–60

    PubMed  CAS  Google Scholar 

  37. Sivam SP, Hoskins B, Ho IK (1984) An assessment of comparative acute toxicity of diisopropyl-fluorophosphate, tabun, sarin, and soman in relation to cholinergic and GABAergic enzyme activities in rats. Fundam Appl Toxicol 4(4):531–538

    Article  PubMed  CAS  Google Scholar 

  38. Bakry NM, el-Rashidy AH, Eldefrawi AT, Eldefrawi ME (1988) Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholine receptors. J Biochem Toxicol 3:235–259

    Article  PubMed  CAS  Google Scholar 

  39. Fernando JC, Lim DK, Hoskins B, Ho IK (1985) Variability of neurotoxicity of and lack of tolerance to the anticholinesterases soman and sarin in the rat. Res Commun Chem Pathol Pharmacol 48(3):415–430

    PubMed  CAS  Google Scholar 

  40. Pazdernik TL, Cross RS, Giesler M, Samson FE, Nelson SR (1985) Changes in local cerebral glucose utilization induced by convulsants. Neuroscience 14(3):823–835

    Article  PubMed  CAS  Google Scholar 

  41. Holmstedt B (1959) Pharmacology of organophosphorus cholinesterase inhibitors. Pharmacol Rev 11:567–688

    PubMed  CAS  Google Scholar 

  42. Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234(4772):80–83

    Article  PubMed  CAS  Google Scholar 

  43. Finkbeiner S, Greenberg ME (1998) Ca2+ channel-regulated neuronal gene expression. J Neurobiol 37(1):171–189

    Article  PubMed  CAS  Google Scholar 

  44. Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, Lohse MJ (1993) Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J Biol Chem 268(5):3201–3208

    PubMed  CAS  Google Scholar 

  45. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274(45):32248–32257

    Article  PubMed  CAS  Google Scholar 

  46. Retondaro FC, Doss Santose Costas PC, Pedrosa RC, Kurtenbach E (1999) Presence of antibodies against the third intracellular loop of the m2 muscarinic receptor in the sera of chronic chagasic patients. Faseb J 13(14):2015–2020

    PubMed  CAS  Google Scholar 

  47. Abou-Donia MB (1995) Involvement of cytoskeletal proteins in the mechanisms of organophosphorus ester-induced delayed neurotoxicity Clin Exp Pharmacol Physiol 22(5):358–369

    Article  PubMed  CAS  Google Scholar 

  48. Gupta RP, Bing G, Hong JS, Abou-Donia MB (1998) cDNA cloning and sequencing of Ca2+/calmodulin-dependent protein kinase IIalpha subunit and its mRNA expression in diisopropyl phosphorofluoridate (DFP)-treated hen central nervous system. Mol Cell Biochem 181(1–2):29–39

    Article  PubMed  CAS  Google Scholar 

  49. Muller D, Bittar P, Boddeke H (1992) Induction of stable long-term potentiation in the presence of the protein kinase C antagonist staurosporine. Neurosci Lett 135(1):18–22

    Article  PubMed  CAS  Google Scholar 

  50. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392(6676):565–568

    Article  PubMed  CAS  Google Scholar 

  51. Sekowski JW, Bucker J, Menking D, Valdes JJ, Midoduszrwski R, Thomson S, Whaley C (2002) Gene expression changes following low level exposure to sarin vapor. In: 23 rd Army Science Conference: Transformation science and technology for the army, Washington, DC

  52. Griffiths R, Ritchie L, Lidwell K, Grieve A, Malcolm CS, Scott M, Meredith C (1998) Calcium influx via L-type voltage-gated channels mediates the delayed, elevated increases in steady-state c-fos mRNA levels in cerebellar granule cells exposed to excitotoxic levels of glutamate. J Neurosci Res 52(6):641–652

    Article  PubMed  CAS  Google Scholar 

  53. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD (2001) Haroutunian V and Fienberg AA, Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98(8):4746–4751

    Article  PubMed  CAS  Google Scholar 

  54. Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74(1):1–20

    Article  PubMed  CAS  Google Scholar 

  55. Hsu SY, Hsueh AI (2000) Tissue-specific Bcl-2 protein partners in apoptosis: an ovarian paradigm. Physiol Rev 80:593–614

    PubMed  CAS  Google Scholar 

  56. Spierings CJD, GE De Veries E, Stel AJ, Rietstap NT, Vellenga E, de Jong S (2004) Low p21 Waf1/ Cip1 protein levels sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis. Oncogene 23:4862–4872

    Article  PubMed  CAS  Google Scholar 

  57. Narkilahti S, Pitkanen A (2005) Caspase 6 expression in the rat hippocampus during epileptogenesis and epilepsy. Neuroscience 131(4):887–897

    PubMed  CAS  Google Scholar 

  58. Smallridge RC, Carr FE, Fein HG (1991) Diisopropylfluorophosphate (DFP) reduces serum prolactin, thyrotropin, luteinizing hormone, and growth hormone and increases adrenocorticotropin and corticosterone in rats: involvement of dopaminergic and somatostatinergic as well as cholinergic pathways. Toxicol Appl Pharmacol 108(2):284–295

    Article  PubMed  CAS  Google Scholar 

  59. Devuyst O (2004) Chloride channels and endocytosis: new insights from Dent’s disease and CLC-5 knock out mice. Bull Mem Acad R Med Belg 159:212–217

    PubMed  CAS  Google Scholar 

  60. Damodaran TV, Abdel-Rahman AA, Suliman HB, Abou-Donia MB (2002) Early differential elevation and persistence of phosphorylated cAMP-response element binding protein (p-CREB) in the central nervous system of hens treated with diisopropyl phosphorofluoridate, an OPIDN-causing compound. Neurochem Res 27(3):183–193

    Article  PubMed  CAS  Google Scholar 

  61. Gupta RP, Abou-Donia MB (2001) Enhanced activity and level of protein kinase A in the spinal cord supernatant of diisopropyl phosphorofluoridate (DFP)-treated hens. Distribution of protein kinases and phosphatases in spinal cord subcellular fractions. Mol Cell Biochem 220(1–2):15–23

    Article  PubMed  CAS  Google Scholar 

  62. Gupta RP, Damodaran TV, Abou-Donia MB (2000) C-fos mRNA induction in the central and peripheral nervous systems of diisopropyl phosphorofluoridate (DFP)-treated hens. Neurochem Res 25(3):327–334

    Article  PubMed  CAS  Google Scholar 

  63. Damodaran TV, Rahman AA, Abou-Donia MB (2000) Early differential induction of C-jun in the central nervous system of hens treated with diisopropylphosphorofluoridate (DFP). Neurochem Res 25(12):1579–1586

    Article  PubMed  CAS  Google Scholar 

  64. Damodaran TV, Abou-Donia MB (2000) Alterations in levels of mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of hens treated with diisopropyl phosphorofluoridate (DFP). Neurochem Res 25(6):809–816

    Article  PubMed  CAS  Google Scholar 

  65. Landgrebe M, Laskawi R, Wolff JR (2000) Transient changes in cortical distribution of S100 proteins during reorganization of somatotopy in the primary motor cortex induced by facial nerve transection in adult rats. Eur J Neurosci 12(10):3729–3740

    Article  PubMed  CAS  Google Scholar 

  66. Martins RN,Taddei K, Kendall C, Evin G, Bates KA, Harvey AR (2001) Altered expression of apolipoprotein E, amyloid precursor protein and presenilin-1 is associated with chronic reactive gliosis in rat cortical tissue. Neuroscience 106(3):557–569

    Article  PubMed  CAS  Google Scholar 

  67. Petegnief V, Saura J, de Gregorio-Rocasolano N, Paul SM (2001) Neuronal injury-induced expression and release of apolipoprotein E in mixed neuron/glia co-cultures: nuclear factor kappaB inhibitors reduce basal and lesion-induced secretion of apolipoprotein E. Neuroscience 104(1):223–234

    Article  PubMed  CAS  Google Scholar 

  68. Boschert U, Merlo-Pich E, Higgins G, Roses, AD, Catsicas S (1999) Apolipoprotein E expression by neurons surviving excitotoxic stress. Neurobiol Dis 6(6):508–514

    Article  PubMed  CAS  Google Scholar 

  69. Ohkubo N, Mitsuda N, Tamatani M, Yamaguchi A, Lee YD, Ogihara T, Vitek MP, Tohyama M (2001) Apolipoprotein E4 stimulates cAMP response element-binding protein transcriptional activity through the extracellular signal-regulated kinase pathway. J Biol Chem 276(5):3046–3053

    Article  PubMed  CAS  Google Scholar 

  70. Ohtsuka K, Suzuki T (2000) Roles of molecular chaperones in the nervous system. Brain Res Bull 53(2):141–146

    Article  PubMed  CAS  Google Scholar 

  71. Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36(2):287–306

    Article  PubMed  CAS  Google Scholar 

  72. Riley JK,Takeda K, Akira S, Schreiber RD (1999) Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J Biol Chem 274(23)(4):16513–16521

    Article  Google Scholar 

  73. Tonelli LH, Postolache TT (2005) Tumor necrosis factor alpha, interleukin-1 beta, interleukin-6 and major histocompatibility complex molecules in the normal brain and after peripheral immune challenge. Neurol Res 27(7):679–684

    Article  PubMed  CAS  Google Scholar 

  74. Hideshima T, Podar K, Chauban D, Anderson KC (2005) Cytokines and signal transduction. Bets Pract Res Clin Hematol 18(4):509–524

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the U.S Army Medical Research and Materiel Command under contract no: DAMD 17-98-8027. The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as official Department of the Army positions, policy, or decisions, unless so designated by other documentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tirupapuliyur V. Damodaran or Mohamed B. Abou-Donia.

Additional information

Note: Explanations for gene symbols used in the text, figures, and flow charts can be found in Table 2, corresponding to the list of genes and their classifications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damodaran, T.V., Greenfield, S.T., Patel, A.G. et al. Toxicogenomic Studies of the Rat Brain at an Early Time Point Following Acute Sarin Exposure. Neurochem Res 31, 367–381 (2006). https://doi.org/10.1007/s11064-005-9023-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-9023-5

Keywords

Navigation