Skip to main content
Log in

Passivity and Passivity-Based Synchronization of Switched Coupled Reaction-Diffusion Neural Networks with State and Spatial Diffusion Couplings

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The authors investigate the passivity problem of switched coupled reaction-diffusion neural networks (SCRDNNs) with state and spatial diffusion couplings in this paper. For the considered network model, we derive an input strict passivity (ISP) criterion and an output strict passivity (OSP) criterion respectively by constructing an appropriate Lyapunov functional and exploiting Green’s formula and some other useful inequalities. Additionally, the authors also establish the relationship between exponential stability and OSP. Moreover, a sufficient condition for achieving synchronization of the considered SCRDNNs with hybrid coupling is presented according to the deduced OSP result and the relationship between exponential stability and OSP. Finally, the correctness of the derived theoretical conclusions is illustrated by two examples with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  MATH  Google Scholar 

  2. Newman MEJ (2010) Networks: an introduction. Oxford University Press, New York

    Book  MATH  Google Scholar 

  3. Freeman LC (2004) The development of social network analysis: a study in the sociology of science. Empirical Press, Vancouver

    Google Scholar 

  4. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  MATH  Google Scholar 

  5. Hill D, Moylan P (1976) The stability of nonlinear dissipative systems. IEEE Trans Autom Control 21(5):708–711

    Article  MathSciNet  MATH  Google Scholar 

  6. Willems JC (1972) Dissipative dynamical systems. Part I: Gen Theory Arch Ration Mech Anal 45(5):321–351

    MATH  Google Scholar 

  7. Bevelevich V (1968) Classical network synthesis. Van Nostrand, New York

    Google Scholar 

  8. Xie L, Fu M, Li H (1998) Passivity analysis and passification for uncertain signal processing systems. IEEE Trans Signal Process 46:2394–2403

    Article  Google Scholar 

  9. Calcev G, Gorez R, Neyer MD (1998) Passivity approach to fuzzy control systems. Automatica 34:339–344

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu X, Zong G, Hou L (2016) Passivity-based stabilization and passive synchronization of complex nonlinear networks. Neurocomputing 175:101–109

    Article  Google Scholar 

  11. Yao J, Guan ZH, Hill DJ (2009) Passivity-based control and synchronization of general complex dynamical networks. Automatica 45:2107–2113

    Article  MathSciNet  MATH  Google Scholar 

  12. Ye Z, Jia H, Zhang H (2016) Passivity analysis of Markovian switching complex dynamic networks with multiple time-varying delays and stochastic perturbations. Chaos Solitons Fractals 83:147–157

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaviarasan B, Sakthivel R, Lim Y (2016) Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory. Neurocomputing 186:127–138

    Article  Google Scholar 

  14. Li C, Liao X (2005) Passivity analysis of neural networks with time delay. IEEE Trans Circuits Syst-II: Express Br 52(8):471–475

    Article  MathSciNet  Google Scholar 

  15. Xu S, Zheng WX, Zou Y (2009) Passivity analysis of neural networks with time-varying delays. IEEE Trans Circuits Syst-II: Express Br 56(4):325–329

    Article  Google Scholar 

  16. Nagamani G, Ramasamy S (2016) Dissipativity and passivity analysis for uncertain discrete-time stochastic Markovian jump neural networks with additive time-varying delays. Neurocomputing 174:795–805

    Article  MATH  Google Scholar 

  17. Thuan MV, Trinh H, Hien LV (2016) New inequality-based approach to passivity analysis of neural networks with interval time-varying delay. Neurocomputing 194:301–307

    Article  Google Scholar 

  18. Song Q, Wang Z (2010) New results on passivity analysis of uncertain neural networks with time-varying delays. Int J Comput Math 87(3):668–678

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu ZG, Shi P, Su H, Chu J (2011) Passivity analysis for discrete-time stochastic markovian jump neural networks with mixed time delays. IEEE Trans Neural Netw 22(10):1566–1575

    Article  Google Scholar 

  20. Balasubramaniam P, Nagamani G, Rakkiyappan R (2011) Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term. Commun Nonlinear Sci Numer Simulat 16:4422–4437

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen Y, Wang H, Xue A, Lu R (2010) Passivity analysis of stochastic time-delay neural networks. Nonlinear Dyn 61:71–82

    Article  MathSciNet  MATH  Google Scholar 

  22. Song Q, Cao J (2012) Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn 67:1695–1707

    Article  MathSciNet  MATH  Google Scholar 

  23. Samidurai R, Manivannan R (2015) Robust passivity analysis for stochastic impulsive neural networks with leakage and additive time-varying delay components. Appl Math Comput 268:743–762

    MathSciNet  Google Scholar 

  24. Shen H, Wu ZG, Park JH (2015) Reliable mixed passive and \(H_{\infty }\) filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int J Robust Nonlinear Control 25(17):3231–3251

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen H, Su L, Park JH (2017) Reliable mixed \(H_{\infty }\)/passive control for T-S fuzzy delayed systems based on a semi-Markov jump model approach. Fuzzy Sets Syst 314:79–98

    Article  MATH  Google Scholar 

  26. Shen H, Zhu YZ, Zhang LX, Park JH (2017) Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28(2):346–358

    Article  MathSciNet  Google Scholar 

  27. Lu JQ, Ho DWC, Wang ZD (2009) Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers. IEEE Trans Neural Netw 20(10):1617–1629

    Article  Google Scholar 

  28. Lu JQ, Ding CD, Lou JG, Cao JD (2015) Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J Franklin Inst 352:5024–5041

    Article  MathSciNet  Google Scholar 

  29. Zhong J, Lu JQ, Liu Y, Cao JD (2014) Synchronization in an array of output-coupled Boolean networks with time delays. IEEE Trans Neural Netw Learn Syst 25(12):2288–2294

    Article  Google Scholar 

  30. Lu JQ, Zhong J, Huang C, Cao JD (2016) On pinning controllability of Boolean control networks. IEEE Trans Autom Control 61(6):1658–1663

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang Y, Cao J (2007) Synchronization of a class of delayed neural networks with reaction-diffusion terms. Phys Lett A 369:201–211

    Article  Google Scholar 

  32. Ren SY, Wu JG, Wei PC (2016) Passivity and pinning passivity of coupled delayed reaction-diffusion neural networks with dirichlet boundary conditions. Neural Process Lett. doi:10.1007/s11063-016-9557-3

    Google Scholar 

  33. Wang JL, Wu HN, Huang T (2015) Passivity-based synchronization of a class of complex dynamical networks with time-varying delay. Automatica 56:105–112

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang JL, Wu HN, Huang T, Ren SY (2015) Passivity and synchronization of linearly coupled reaction-diffusion neural networks with adaptive coupling. IEEE Trans Cybern 45(9):1942–1952

    Article  Google Scholar 

  35. Wang JL, Wu HN (2014) Synchronization and adaptive control of an array of linearly coupled reaction-diffusion neural networks with hybrid coupling. IEEE Trans Cybern 44(8):135–1461

    Article  Google Scholar 

  36. Wang JL, Wu HN, Huang T, Ren SY (2016) Pinning control strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Trans Neural Netw Learn Syst 27(4):749–761

    Article  MathSciNet  Google Scholar 

  37. Wang JL, Wu HN, Huang T, Ren SY, Wu J (2016) Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies. IEEE Trans Syst Man Cybern: Syst 46(8):1109–1120

    Article  Google Scholar 

  38. Wang JL, Wu HN, Huang T, Ren SY, Wu J (2016) Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength. IEEE Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2627083

    Google Scholar 

  39. Wang JL, Wu HN, Huang T, Ren SY, Wu J (2016) Passivity analysis of coupled reaction-diffusion neural networks with Dirichlet boundary conditions. IEEE Trans Syst Man Cybern: Syst, doi:10.1109/TSMC.2016.2622363

  40. Wang JL, Wu HN, Huang T, Ren SY, Wu J (2016) Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2558502

    Google Scholar 

  41. Zhao J, Hill DJ (2008) Passivity and stability of switched systems: A multiple storage function method. Syst Control Lett 57:158–164

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao J, Hill DJ (2008) Dissipativity theory for switched systems. IEEE Trans Autom Control 53(4):941–953

    Article  MathSciNet  MATH  Google Scholar 

  43. Hu MF, Cao JD, Yang YQ, Hu AH (2013) Passivity analysis for switched generalized neural networks with time-varying delay and uncertain output. IMA J Math Control Inf 30(3):407–422

    Article  MathSciNet  MATH  Google Scholar 

  44. Lian J, Wang J (2015) Passivity of switched recurrent neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 26(2):357–366

    Article  MathSciNet  Google Scholar 

  45. Li N, Cao J (2016) Passivity and robust synchronisation of switched interval coupled neural networks with time delay. Int J Syst Sci 47(12):2827–2836

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu BB, Huang YL, Wang JL, Wei PC, Ren SY (2016) Passivity of linearly coupled neural networks with reaction-diffusion terms and switching topology. J Franklin Inst 353:1882–1898

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu BB, Huang YL, Wang JL, Wei PC, Ren SY (2016) Passivity of linearly coupled reaction-diffusion neural networks with switching topology and time-varying delay. Neurocomputing 182:274–283

    Article  Google Scholar 

  48. Kannan R, Krueger CK (1996) Advanced analysis, chapter 3: Dini derivatives. Springer, New York

    Book  Google Scholar 

  49. Niculescu SI, Lozano R (2001) On the passivity of linear delay systems. IEEE Trans Autom Control 46:460–464

    Article  MathSciNet  MATH  Google Scholar 

  50. Lu JG (2008) Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals 35:116–125

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and anonymous reviewers for their valuable comments and suggestions. This work was supported in part by the National Natural Science Foundation of China under Grants 11501411, 61503010, 61403275 and 11401018, in part by the Natural Science Foundation of Tianjin, China, under Grant 15JCQNJC04100, and in part by the Aeronautical Science Foundation of China (No.2016ZA51001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Ren, S. Passivity and Passivity-Based Synchronization of Switched Coupled Reaction-Diffusion Neural Networks with State and Spatial Diffusion Couplings. Neural Process Lett 47, 347–363 (2018). https://doi.org/10.1007/s11063-017-9651-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9651-1

Keywords

Navigation