Skip to main content
Log in

Asymmetry of Motor Behavior of the Goldfish in a Narrow Channel

  • Published:
Neurophysiology Aims and scope

Abstract

We studied swimming of goldfish fries about 3 cm long in a narrow channel by calculating the numbers of spontaneous turns on different sides. The ratio of fishes preferring to turn to the right vs to the left was 1.5:1.0, respectively; two-thirds of the fishes demonstrated an ambilateral behavior. Experiments with compulsory 10-min-long rotation of the fishes (clockwise around the longitudinal body axis for fishes preferring right-side turns and anticlockwise for fishes preferring left-side turns) showed that the behavioral asymmetry smoothed somewhat after such a procedure, and a greater number of the fishes became ambilateral in their preference to turn to one side or another. After a one- or two-day-long test, the initial asymmetry of motor behavior completely recovered. Compulsory rotation of similar fishes in the opposite direction exerted no influence on the asymmetry in the choice of the turning direction. Adaptation-induced training of the fishes (using fatiguing long-lasting vestibular stimulation) resulted in some smoothing of motor asymmetry but did not change its general pattern. Thus, our findings allow us to believe that a noticeable proportion of the goldfish individuals (similarly to other animals and humans) is characterized by an innate asymmetry of the motor function with a clear preference for either right- or left-side turnings. These relations can be smoothed under experimental influences but are recovered later on, i.e., they are stable and are not fundamentally transformed. We assume that the asymmetry of motor behavior of fishes in a narrow channel can be an adequate pre-requisite for further examination of the asymmetry of the brain and motor centers controlling changes in locomotion (body turnings)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Vinogradova, “Neuroscience at the end of the second millennium: A change of the paradigms,” Zh. Vyssh. Nerv. Deyat., 50, No.5, 743–774 (2000).

    Google Scholar 

  2. A. M. Thomson, “Facilitation, augmentation and potentiation at central synapses,” Trends Neurosci., 23, No.7, 305–312 (2000).

    Article  PubMed  Google Scholar 

  3. R. Yuste and W. Denk, “Dendritic spines as basic units of synaptic integration,” Nature, 375, No.6533, 682–684 (1995).

    Article  PubMed  Google Scholar 

  4. C. Salas, C. Broglio, and F. Rodrigues, “Evolution of forebrain and spatial cognition in vertebrates: Conservation across diversity,” Brain, Behav., Evolut., 62, 72–82 (2003).

    Google Scholar 

  5. V. L. Bianki, Asymmetry of the Animal Brain [in Russian], Nauka, Leningrad (1985).

    Google Scholar 

  6. H. Kleerekoper, A. M. Timms, G. F. Westlake, et al., “Inertial guidance system in the orientation of the goldfish (Carassius auratus),” Nature, 223, No.5205, 501–502 (1969).

    PubMed  Google Scholar 

  7. S. D. Glick, T. P. Jerussi, and B. Zimmerberg, “Behavioral and neuropharmacological correlates of nigrostriatal asymmetry in rats,” in: Lateralization in the Nervous System, S. Harnad, R. W. Doty, L. Goldstein, et al. (eds.), New York (1977), pp. 213–249.

  8. A. Pascual, K.-L. Huang, J. Neveu, and T. Preat, “Brain asymmetry and long-term memory,” Nature, 427, No.6975, 605 (2004).

    Article  PubMed  Google Scholar 

  9. S. I. Gleizer, “Functional dissymmetry in fishes,” Zh. Vyssh. Nerv. Deyat., 31, Issue2, 431–434 (1981).

    Google Scholar 

  10. Functional Interhemisphere Asymmetry [in Russian], N. N. Bogolepov and V. F. Fokin (eds.), Nauchnyi Mir, Moscow (2004).

    Google Scholar 

  11. D. A. Moshkov, Adaptation and Ultrastructure of the Neuron [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  12. D. A. Moshkov, I. Ya. Podol’skii, L. A. Kashapova, et al., “Quantitative characteristics of the motor activity of the goldfish, Carassius auratus, as a possible indicator of the state of Mauthner neurons,” Zh. Evol. Biokhim., 18, No.2, 155–160 (1982).

    Google Scholar 

  13. D. A. Moshkov, I. M. Santalova, N. R. Tiras, et al., “Interaction of two different sensory inputs at the level of Mauthner neurons in goldfish: morphofunctional analysis,” in: Signal Molecules and Behavior, W. Winlow, O. S. Vinogradova, and D. A. Sakharov (eds.), Manchester Univ. Press, Manchester, New York (1991), pp. 199–204.

    Google Scholar 

  14. D. A. Moshkov, L. L. Pavlik, R. N. Tiras, et al., “Ultrastructural changes in the mixed synapses of Mauthner neurons related to long-term potentiation and natural modification of the motor function,” Neurophysiology/Neirofiziologiya, 35, No.5, 361–370 (2003).

    Article  Google Scholar 

  15. S. J. B. Butt, J. M. Lebret, and O. Kiehn, “Organization of left-right coordination in the mammalian locomotor network,” Brain Res. Rev., 40, Nos.1/3, 107–117 (2002).

    Article  PubMed  Google Scholar 

  16. K. S. Liu and J. R. Fetcho, “Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish,” Neuron, 23, No.2, 325–335 (1999).

    Article  PubMed  Google Scholar 

  17. R. N. Tiras, I. B. Mikheeva, P. I. Pakhotin, and D. A. Moshkov, “Morphofunctional modifications of the adapted Mauthner neurons of the goldfish after long-term orthodromic stimulation of the acoustic nerve in vitro,” Morfologiya, 122, Issue6, 19–24 (2002).

    Google Scholar 

  18. J. Nissanov, R. C. Eaton, and R. DiDomenico, “The motor output of the Mauthner cell, a reticulospinal command neuron,” Brain Res., 517, Nos.1/2, 88–98 (1990).

    Article  PubMed  Google Scholar 

  19. N. V. Markinas, O. V. Perepelkina, I. L. Plekhanova, et al., “Asymmetry of behavior and brain morphology in mice selected for heavy or light brain weight,” in: Urgent Question of Functional Interhemisphere Asymmetry (May 26–28, 2003) [in Russian], Moscow (2003), p. 70.

  20. O. Gunturkun, “Adult persistence of head-turning asymmetry,” Nature, 421, No.6924, 711 (2003).

    Article  Google Scholar 

  21. G. P. Udalova and A. Ya. Karas’, “Comparative analysis of spatial motor asymmetry in vertebrates,” in: Urgent Question of Functional Interhemisphere Asymmetry (May 26–28, 2003) [in Russian], Moscow (2003), pp. 316–317.

  22. V. A. Geodakyan, “Asynchronous asymmetry,” Zh. Vyssh. Nerv. Deyat., 43, Issue3, 543–561 (1993).

    Google Scholar 

  23. V. F. Fokin and N. V. Ponomareva, Energetic Physiology of the Brain [in Russian], Antidor, Moscow (2003).

    Google Scholar 

  24. R. A. Sadekov and M. I. Vendrova, “Motor asymmetry and interhemisphere interaction in Parkinson’s disease,” Zh. Nevrol. Psikhiat., No. 1, 42–46 (2004).

    Google Scholar 

  25. H. van Praag, B. R. Christie, T. J. Sejnowski, and F. H. Gage, “Running enhances neurogenesis, learning, and long-term potentiation in mice,” Proc. Natl. Acad. Sci. USA, 96, No.23, 13427–13431 (1999).

    Article  PubMed  Google Scholar 

  26. S. G. Sarkisyan, M. L. Egiazaryan, and S. M. Minasyan, “Asymmetry of characteristics of the background activity of neurons of the medial vestibular nucleus in rats after long-term vibrational stimulation,” Neirofiziologiya/Neurophysiology, 35, No.6, 470–475 (2003).

    Google Scholar 

  27. T. Preuss and D. S. Faber, “Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behavior,” J. Neurosci., 23, No.13, 5617–5626 (2003).

    PubMed  Google Scholar 

  28. Y. Oda, K. Kawasaki, M. Morita, et al., “Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape behavior,” Nature, 394, No.6689, 182–185 (1998).

    Article  PubMed  Google Scholar 

  29. D. S. Faber, J. R. Fetcho, and H. Korn, “Neuronal networks underlying the escape response in goldfish: general implications for motor control,” Ann. New York Acad. Sci., 563, 11–33 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Z. Mikhailova, A. V. Arutyunyan, I. M. Santalava, V. D. Pavlik, N. P. Tiras or D. A. Moshkov.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 52–60, January–February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailova, G.Z., Arutyunyan, A.V., Santalava, I.M. et al. Asymmetry of Motor Behavior of the Goldfish in a Narrow Channel. Neurophysiology 37, 48–55 (2005). https://doi.org/10.1007/s11062-005-0044-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-005-0044-0

Keywords

Navigation