Skip to main content
Log in

Intracellular mechanisms participating in the formation of neuronal calcium signals

  • Proceedings of the IBRO Advanced School of Neuroscience “Receptors, Channels, Messengers” (Yalta, Crimean Autonomic Republic, Ukraine, 16–28 September, 2004)
  • Published:
Neurophysiology Aims and scope

Abstract

Ion and metabolic processes in the endoplasmic reticulum, mitochondria, plasma membrane, etc. providing calcium signaling in the cells of excitable and nonexcitable tissues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. Ayar and R. Scott, “The actions of ryanodine on Ca2+-activated conductances in rat cultured DRG neurons; evidence for calcium-induced calcium release,” Naunyn Schmiedeberg’s Arch. Pharmacol., 359, 81–89 (1999).

    Google Scholar 

  2. D. Babcock and B. Hille, “Mitochondrial oversight of cellular Ca2+ signaling,” Curr. Opin. Neurobiol., 8, 398–404 (1998).

    Google Scholar 

  3. J. Meldolesi, “Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties,” Prog. Neurobiol., 65, 309–338 (2001).

    Google Scholar 

  4. L. Jouaville, F. Ichas, E. Halmuhamedov, et al., “Synchronization of calcium waves by mitochondria substrates in Xenopus laevis oocytes,” Nature, 377, 438–441 (1995).

    Google Scholar 

  5. B. Landolfi, S. Curci, L. Debellis, et al., “Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells,” J. Cell Biol., 275, 25465–25470 (1998).

    Google Scholar 

  6. R. Rizzuto, W. Pinton, F. Carrington, et al., “Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses,” Science, 280, 1763–1766 (1998).

    Google Scholar 

  7. M. Blaustein and V. Golovina, “Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores,” Trends Neurosci., 24, 802–808 (2001).

    Google Scholar 

  8. T. Collins, P. Lipp, M. Berridge, and M. Bootman, “Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals,” J. Biol. Chem., 276, 26411–26420 (2001).

    Google Scholar 

  9. J. Pitter, P. Maechser, and C. Wollheim, “Spat, Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state,” Cell Calcium, 32, No.2, 97–104 (2002).

    Google Scholar 

  10. M. R. Duchen, “Contributions of mitochondria to animal physiology-from homeostatic sensor to calcium signaling,” J. Physiol., 516, 1–17 (1999).

    Google Scholar 

  11. V. G. Dedov and B. Rouphagalis, “Organization of mitochondria in living sensory neurons,” FEBS Lett., 456, 171–174 (1999).

    Google Scholar 

  12. C. Villalobos, L. Nunez, P. Chamero, et al., “Mitochondrial Ca2+ oscillations driven by local high Ca2+ domains generate spontaneous electric activity,” J. Biol. Chem., 276, 4093–4097 (2001).

    Google Scholar 

  13. A. Shmigol, N. Kirischuk, P. Kostyuk, and A. Verkhratsky, “Different properties of caffeine-sensitive Ca2+ stores in peripheral and central mammalian neurons,” Pflügers Arch., 426, 174–176 (1994).

    Google Scholar 

  14. Shmigol, A. Verkhratsky, and G. Isenberg, “Calcium-induced calcium release in sensory neurons,” Neuroscience, 73, 1061–1067 (1995).

    Google Scholar 

  15. A. Lokuta, K. Hirochika, S. Thomas, et al., “Functional properties of ryanodine receptors from rat dorsal root ganglia,” FEBS Lett., 511, 90–96 (2002).

    Google Scholar 

  16. K. Currie, K. Swann, A. Galione, and R. Scott, “Activation of Ca2+-dependent currents in cultured rat dorsal ganglion neurons by a sperm factor and cyclic ADP ribose,” Mol. Biol. Cell, 3, 1415–1425 (1992).

    Google Scholar 

  17. J. Crawford, J. Wootton, G. Seabrook, and R. Scott, “Activation of Ca2+-dependent currents in dorsal root ganglia by metabotropic glutamate receptors and cycle ADP-ribose precursors,” J. Neurophysiol., 77, 2573–2584 (1998).

    Google Scholar 

  18. L. Harding, D. J. Beadle, and I. Bermudez, “Calcium channels controlling substance P release from cell sensory bodies,” Soc. Neurosci. Abstr., 46, 12 (1997).

    Google Scholar 

  19. M. J. Berridge, “Inositol-trisphosphate and calcium signaling,” Nature, 361, 315–325 (1993).

    Google Scholar 

  20. L. Broad, F. Braun, J. Lievremont, et al., “Role of the phospholipase C-inositol 1,4,5-phosphate pathway in calcium release-activated calcium current and capacitative calcium entry,” J. Biol. Chem., 276, 15945–15962 (2001).

    Google Scholar 

  21. T. Miyakawa, A. Mizushima, Kenzo Hirose, et al., “Ca2+-sensor region of IP3 receptor controls intracellular calcium signaling,” EMBO J., 20, 1674–1680 (2001).

    Google Scholar 

  22. V. Shishkin, E. Potapenko, E. Kostyuk, et al., “Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurons of rats,” Cell Calcium, 32, 121–130 (2002).

    Google Scholar 

  23. P. Pacher, A. Thomas, and G. Hajnoczky, “Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors,” Proc. Natl. Acad. Sci. USA, 99, 2380–2385 (2002).

    Google Scholar 

  24. G. Hajnoczky, G. Csordas, M. Madesh, and P. Pacher, “The machinery of local Ca2+ oscillations between sarcoendoplasmic reticulum and mitochondria,” J. Physiol., 529, 69–81 (2000).

    Google Scholar 

  25. S. Smaili, K. Stellato, P. Burnett, et al., “Cyclosporin A inhibits inositol 1,4,5-trisphosphate-dependent Ca2+ signals by enhancing Ca2+ uptake into endoplasmic reticulum and mitochondria,” J. Biol. Chem., 276, 23329–23340 (2001).

    Google Scholar 

  26. K. Fagan, R. Graf, J. Tolman, and D. Schaak, “Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative calcium entry,” J. Biol. Chem., 275, 40187–40194 (2000).

    Google Scholar 

  27. J. W. Putney, “Capacitative calcium entry in nervous system,” Cell Calcium, 34, 339–344 (2003).

    Google Scholar 

  28. P. G. Kostyuk and O. A. Krishtal, “Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurons,” J. Physiol., 270, 569–580 (1977).

    Google Scholar 

  29. H. Kerschbaum and M. Cahalan, “Single-channel recording of a store-operated Ca2+ channels in T-lymphocytes,” Science, 283, 836–839 (1998).

    Google Scholar 

  30. D. E. Clapham, “Sorting out of MIP, TRP and CRAC ion channels,” J. Gen. Physiol., 120, 217–220 (2002).

    Google Scholar 

  31. S. Sencer, R. Rapineni, D. Halling, et al., “Coupling of RYR1 and L-type calcium channels via calmodulin binding domains,” J. Biol. Chem., 276, 38237–38241 (2001).

    Google Scholar 

  32. P. Chavis, L. Fagni, J. B. Lansman, and J. Bockaert, “Functional coupling between ryanodine receptors and L-type calcium channels in neurons,” Nature, 382, 719–722 (1996).

    Google Scholar 

  33. N. Emptage, A. Reid, and A. Fine, “Calcium stores in hippocampal synaptic boutons mediated short-term plasticity, store-operated Ca2+ entry and spontaneous neurotransmitter release,” Neuron, 29, 197–208 (2001).

    Google Scholar 

  34. N. Voets, A. Prenen, R. Fleig, et al., “CaT1 and the calcium-release activated channels manifested distinct pore properties,” J. Biol. Chem., 276, 47767–47770 (2001).

    Google Scholar 

  35. J. W. Putney, “TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry,” Proc. Natl. Acad. Sci. USA, 96, 14669–14671 (1999).

    Google Scholar 

  36. T. Cheek and O. Thastrup, “Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells,” Cell Calcium, 10, 213–221 (1989).

    Google Scholar 

  37. J. Gilbert and A. Parekh, “Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current I CRAC,” EMBO J., 19, 6401–6407 (2000).

    Google Scholar 

  38. A. Parekh, A. Fleig, and R. Penner, “The store-operated calcium current I CRAC. Nonlinear activation by InsP3 and dissociation from calcium release,” Cell, 89, 973–980 (1997).

    Google Scholar 

  39. X. Bian, F. M. Hughes, Y. Huang, et al., “Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells,” Am. J. Physiol., 272, C1241–C1249 (1997).

    Google Scholar 

  40. J. W. Putney, “Presenilins, Alzheimer’s disease, and capacitative calcium entry,” Neuron, 27, 411–442 (2000).

    Google Scholar 

  41. A. Hernandez-Crus, A. L. Escobar, and N. Jimenez, “Ca2+-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the rate of rise of trigger Ca2+,” J. Gen. Physiol., 109, No.2, 147–167 (1997).

    Google Scholar 

  42. Y. Tang and R. Zucker, “Mitochondrial involvement in post-tetanic potentiation of synaptic transmission, ” Neuron, 18, 483–491 (1997).

    Google Scholar 

  43. P. Kostyuk, N. Pronchuk, A. Savchenko, and A. Verkhratsky, “Calcium currents in aged dorsal root ganglion neurons,” J. Physiol., 461, 467–483 (1993).

    Google Scholar 

  44. A. Verkhratsky, A. Shmigol, S. Kirischuk, et al., “Age-dependent changes in calcium currents and calcium homeostasis in mammalian neurons,” Ann. New York Acad. Sci., 747, 365–381 (1994).

    Google Scholar 

  45. S. Kirischuk and A. Verkhratsky, “Calcium homeostasis in aged neurons,” Life Sci., 59, 451–459 (1996).

    Google Scholar 

  46. P. Kostyuk, Plasticity in Nerve Cell Function, Oxford Science Publications, Clarendon Press, Oxford (1998).

    Google Scholar 

  47. E. Kostyuk, N. Pronchuk, and A. Shmigol, “Calcium signal prolongation in sensory neurons of mice with experimental diabetes,” NeuroReport, 6, 1010–1012 (1995).

    Google Scholar 

  48. E. Kostyuk, N. Voitenko, I. Kruglikov, et al., “Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons,” Diabetologia, 44, 1302–1309 (2001).

    Google Scholar 

  49. I. Kruglikov, O. Gryshchenko, L. Shutov, et al., “Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons,” Pflügers Arch., 448, 395–401 (2004).

    Google Scholar 

  50. N. Svichar, V. Shishkin, E. Kostyuk, and N. Voitenko, “Changes in mitochondrial Ca2+ homeostasis in primary sensory neurons of diabetic mice,” NeuroReport, 9, 1121–1125 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Kostyuk.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 405–417, September–December, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuk, E.P., Kostyuk, P.G. & Stepanova, I.V. Intracellular mechanisms participating in the formation of neuronal calcium signals. Neurophysiology 36, 358–370 (2004). https://doi.org/10.1007/s11062-005-0030-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-005-0030-6

Keywords

Navigation