Skip to main content
Log in

Adult H3K27M mutated thalamic glioma patients display a better prognosis than unmutated patients

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Adult thalamic gliomas are a rare entity whose management is challenging for physicians. The aim of this study is to describe the characteristics and prognostic factors of thalamic gliomas in adult patients.

Methods

We retrospectively analyzed the clinical, neuro-radiological, histological, and molecular characteristics of all cases of adult thalamic glioma in our regional center.

Results

We included 38 adult patients. Median age at diagnosis was 56.5 years old (range, 24–80). Median KPS at diagnosis was 70%. Two-thirds of patients presented with tumor necrosis on MRI. Bithalamic lesions were present in four patients. The median volume of enhancement associated with lesions was relatively small (14 mm3). Two patients had undergone partial surgical resection. All other patients underwent biopsy. Median PFS was 7.1 months (95% CI [3.7–10.5]) and median OS was 15.6 months (95% CI [11.7–19.6]). Among 20 patients with available tumor samples for molecular analyses, only 4 (20%) presented with H3K27M mutation. Patients with H3K27M mutation had longer survival compared to those without. Finally, we identified a long-term survivor population characterized by a younger age, no cognitive impairment, low steroid dose treatment and the presence of H3K27M mutation.

Conclusion

Thalamic adult glioma differs from bithalamic glioma in children with regards to its clinical, radiological and molecular profiles. Long-term survival is observed in young patients with limited symptoms and H3K27M mutation. A larger prospective cohort is needed to validate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ostrom QT, Gittleman H, Stetson L et al (2018) Epidemiology of Intracranial Gliomas. In: Chernov MF, Muragaki Y, Kesari S, McCutcheon IE (eds) Progress in neurological surgery. S. Karger AG, Basel, pp 1–11

    Google Scholar 

  2. Ostrom QT, Gittleman H, Truitt G et al (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:41–486. https://doi.org/10.1093/neuonc/noy131

    Article  Google Scholar 

  3. Larjavaara S, Mäntylä R, Salminen T et al (2007) Incidence of gliomas by anatomic location. Neuro Oncol 9:319–325. https://doi.org/10.1215/15228517-2007-016

    Article  PubMed  PubMed Central  Google Scholar 

  4. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  5. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  6. Bender S, Tang Y, Lindroth AM et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672. https://doi.org/10.1016/j.ccr.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  7. Buczkowicz P, Bartels U, Bouffet E et al (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 128:573–581. https://doi.org/10.1007/s00401-014-1319-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daoud EV, Rajaram V, Cai C et al (2018) Adult brainstem gliomas with H3K27M mutation: radiology, pathology, and prognosis. J Neuropathol Exp Neurol 77:302–311. https://doi.org/10.1093/jnen/nly006

    Article  CAS  PubMed  Google Scholar 

  9. Lu VM, Alvi MA, McDonald KL, Daniels DJ (2019) Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. J Neurosurg Pediatr 23:308–316. https://doi.org/10.3171/2018.9.PEDS18419

    Article  Google Scholar 

  10. Louis DN, Giannini C, Capper D et al (2018) cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 135:639–642. https://doi.org/10.1007/s00401-018-1826-y

    Article  PubMed  Google Scholar 

  11. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  Google Scholar 

  12. Cheek WR, Taveras JM (1966) Thalamic tumors. J Neurosurg 24(2):505–513. https://doi.org/10.3171/jns.1966.24.2.0505

  13. McKISSOCK W, Paine KWE (1958) Primary tumours of the thalamus. Brain 81:41–63. https://doi.org/10.1093/brain/81.1.41

    Article  CAS  PubMed  Google Scholar 

  14. Tovi D, Schisano G, Liljeqvist B (1961) Primary tumors of the region of the thalamus. J Neurosurg 18:730–740. https://doi.org/10.3171/jns.1961.18.6.0730

    Article  CAS  PubMed  Google Scholar 

  15. Gupta A, Shaller N, McFadden KA (2017) Pediatric thalamic gliomas: an updated review. Arch Pathol Lab Med 141:1316–1323. https://doi.org/10.5858/arpa.2017-0249-RA

    Article  CAS  PubMed  Google Scholar 

  16. Sreenivasan S, Madhugiri V, Sasidharan G, RoopeshVR K (2016) Measuring glioma volumes: a comparison of linear measurement based formulae with the manual image segmentation technique. J Cancer Res Ther 12:161. https://doi.org/10.4103/0973-1482.153999

    Article  CAS  PubMed  Google Scholar 

  17. Wen PY, Chang SM, Van den Bent MJ et al (2017) Response assessment in neuro-oncology clinical trials. JCO 35:2439–2449. https://doi.org/10.1200/JCO.2017.72.7511

    Article  CAS  Google Scholar 

  18. Wang L, Li Z, Zhang M et al (2018) H3 K27M–mutant diffuse midline gliomas in different anatomical locations. Hum Pathol 78:89–96. https://doi.org/10.1016/j.humpath.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Feng L, Ji P et al (2021) Clinical features and molecular markers on diffuse midline gliomas with H3K27M mutations: a 43 Cases Retrospective Cohort Study. Front Oncol 10:602553. https://doi.org/10.3389/fonc.2020.602553

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manjunath N, Jha P, Singh J et al (2021) Clinico-pathological and molecular characterization of diffuse midline gliomas: is there a prognostic significance? Neurol Sci 42:925–934. https://doi.org/10.1007/s10072-020-04489-0

    Article  PubMed  Google Scholar 

  21. Schreck KC, Ranjan S, Skorupan N et al (2019) Incidence and clinicopathologic features of H3 K27M mutations in adults with radiographically-determined midline gliomas. J Neurooncol 143:87–93. https://doi.org/10.1007/s11060-019-03134-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline gliomas with histone H3–K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations: diffuse midline gliomas with histone H3–K27M mutation. Brain Pathol 26:569–580. https://doi.org/10.1111/bpa.12336

    Article  CAS  PubMed  Google Scholar 

  23. Mondal G, Lee JC, Ravindranathan A et al (2020) Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol 139:1071–1088. https://doi.org/10.1007/s00401-020-02155-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broniscer A, Hwang SN, Chamdine O et al (2018) Bithalamic gliomas may be molecularly distinct from their unilateral high-grade counterparts: distinct from their unilateral high-grade counterparts. Brain Pathol 28:112–120. https://doi.org/10.1111/bpa.12484

    Article  CAS  PubMed  Google Scholar 

  25. Zuo M, Li M, Chen N et al (2017) IDH1 status is significantly different between high-grade thalamic and superficial gliomas. CBM 20:183–189. https://doi.org/10.3233/CBM-170175

    Article  CAS  Google Scholar 

  26. Schulte JD, Buerki RA, Lapointe S et al (2020) Clinical, radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults. Neuro-Oncol Adv 2:142. https://doi.org/10.1093/noajnl/vdaa142

    Article  Google Scholar 

  27. Dufour C, Perbet R, Leblond P et al (2020) Identification of prognostic markers in diffuse midline gliomas H3K27M-mutant. Brain Pathol 30:179–190. https://doi.org/10.1111/bpa.12768

    Article  CAS  PubMed  Google Scholar 

  28. Karremann M, Gielen GH, Hoffmann M et al (2018) Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro Oncol 20:123–131. https://doi.org/10.1093/neuonc/nox149

    Article  CAS  PubMed  Google Scholar 

  29. Feng J, Hao S, Pan C et al (2015) The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults. Hum Pathol 46:1626–1632. https://doi.org/10.1016/j.humpath.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  30. Enomoto T, Aoki M, Hamasaki M et al (2020) Midline glioma in adults: clinicopathological, genetic, and epigenetic analysis. Neurol Med Chir (Tokyo) 60:136–146. https://doi.org/10.2176/nmc.oa.2019-0168

    Article  Google Scholar 

  31. Aihara K, Mukasa A, Gotoh K et al (2014) H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro Oncol 16:140–146. https://doi.org/10.1093/neuonc/not144

    Article  CAS  PubMed  Google Scholar 

  32. Meyronet D, Esteban-Mader M, Bonnet C et al (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 19:1127–1134. https://doi.org/10.1093/neuonc/now274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osada Y, Saito R, Shibahara I et al (2021) H3K27M and TERT promoter mutations are poor prognostic factors in surgical cases of adult thalamic high-grade glioma. Neuro-Oncol Adv 3:038. https://doi.org/10.1093/noajnl/vdab038

    Article  Google Scholar 

  34. Esquenazi Y, Moussazadeh N, Link TW et al (2018) Thalamic glioblastoma: clinical presentation, management strategies, and outcomes. Neurosurgery 83:76–85. https://doi.org/10.1093/neuros/nyx349

    Article  PubMed  Google Scholar 

  35. Tabouret E, Fabbro M, Autran D et al (2021) TEMOBIC: phase II trial of neoadjuvant chemotherapy for unresectable anaplastic gliomas: an ANOCEF study. Oncologist 26:647-e1304. https://doi.org/10.1002/onco.13765

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chauffert B, Feuvret L, Bonnetain F et al (2014) Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Ann Oncol 25:6

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ARTC-Sud patients’s association (Association pour le Recherche sur les Tumeurs Cérébrales). We thank the Cancéropôle PACA. We thank the AP-HM Tumor Bank (authorization number: AC2018-31053; CRB BB-0033-00097) for providing tissue samples.

Funding

ARTC-Sud.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (ET); data curation (SG, VH, RA, CB, GP, CC, MB, DA, SB, TG, DFB, IN, OC); formal analysis (SG, VH, ET); methodology (ET); supervision (DFB, OC, ET); writing—original draft (SG, VH, ET); writing—review and editing (All authors).

Corresponding author

Correspondence to Emeline Tabouret.

Ethics declarations

Conflict of interest

None.

Ethical approval

The study was approved by our local ethics committee in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaldi, S., Harlay, V., Appay, R. et al. Adult H3K27M mutated thalamic glioma patients display a better prognosis than unmutated patients. J Neurooncol 156, 615–623 (2022). https://doi.org/10.1007/s11060-022-03943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-03943-7

Keywords

Navigation