Skip to main content

Advertisement

Log in

Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Glioblastoma (GBM) has a survival rate of around 2 years with aggressive current standard of care. While other tumors have responded favorably to trials combining immunotherapy and chemotherapy, GBM remains uniformly deadly with minimal increases in overall survival. GBM differ from others due to being isolated behind the blood brain barrier, increased heterogeneity and mutational burden, and immunosuppression from the brain environment and tumor itself.

Methods

We have reviewed clinical and preclinical studies investigating how different doses (dose intense (DI) and metronomic) and timing of immunotherapy following TMZ treatment can eradicate tumor cells, alter tumor mutational burden, and change immune cells.

Results

Recent clinical trials with standard of care (SoC), DI and metronomic TMZ regimes are no able to completely eradicate GBM. Elevated TMZ levels in DI treatment can overcome MGMT resistance but may result in hypermutation of surviving tumor cells. Higher levels of TMZ will also generate a higher degree of lymphopenia compared to SoC and metronomic regimes in preclinical studies.

Conclusion

The different levels of lymphopenia and tumor eradication discussed in this review suggest possible beneficial pairings between immunotherapy and TMZ treatment. Treatments resulting in profound lymphopenia will allow for expansion of vaccine specific T cells or of CAT T cells. Clinical and preclinical studies are currently comparing different combinations of TMZ and immunotherapy timing to treat GBM through a balance between tumor killing and immune cell expansion. More frequent immune monitoring time points in ongoing clinical trials are crucial for further development of these combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-oncology 16(Suppl 4):iv1–iv63. https://doi.org/10.1093/neuonc/nou223

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez J, Palmer JD (2019) Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): a review. Cancers. https://doi.org/10.3390/cancers11020174

    Article  PubMed  PubMed Central  Google Scholar 

  4. Del Vecchio CA, Li G, Wong AJ (2012) Targeting EGF receptor variant III: tumor-specific peptide vaccination for malignant gliomas. Expert Rev Vaccines 11:133–144. https://doi.org/10.1586/erv.11.177

    Article  CAS  PubMed  Google Scholar 

  5. Neagu MR, Reardon DA (2015) Rindopepimut vaccine and bevacizumab combination therapy: improving survival rates in relapsed glioblastoma patients? Immunotherapy 7:603–606. https://doi.org/10.2217/imt.15.39

    Article  CAS  PubMed  Google Scholar 

  6. Fecci PE, Heimberger AB, Sampson JH (2014) Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res 20:5620–5629. https://doi.org/10.1158/1078-0432.CCR-14-0832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sayegh ET, Oh T, Fakurnejad S, Bloch O, Parsa AT (2014) Vaccine therapies for patients with glioblastoma. J Neurooncol 119:531–546. https://doi.org/10.1007/s11060-014-1502-6

    Article  CAS  PubMed  Google Scholar 

  8. Reardon D, Omuro A, Brandes A, Rieger J, Wick A, Sepulveda J, Phuphanich S, De Souza P, Ahluwalia M, Lim M (2017) OS10. 3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro-Oncology 19:iii21–iii21

    Article  PubMed Central  Google Scholar 

  9. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722. https://doi.org/10.1056/NEJMoa1308345

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708. https://doi.org/10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma DJ, Galanis E, Anderson SK, Schiff D, Kaufmann TJ, Peller PJ, Giannini C, Brown PD, Uhm JH, McGraw S, Jaeckle KA, Flynn PJ, Ligon KL, Buckner JC, Sarkaria JN (2015) A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neurooncology 17:1261–1269. https://doi.org/10.1093/neuonc/nou328

    Article  CAS  Google Scholar 

  12. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635. https://doi.org/10.1038/nri3265

    Article  CAS  PubMed  Google Scholar 

  13. Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF, Nataf S (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107:806–812. https://doi.org/10.1182/blood-2005-01-0154

    Article  CAS  PubMed  Google Scholar 

  14. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. https://doi.org/10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro-oncology 17(Suppl 7):9–14. https://doi.org/10.1093/neuonc/nov151

    Article  CAS  Google Scholar 

  17. Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23:263–272. https://doi.org/10.1385/IR:23:2-3:263

    Article  CAS  PubMed  Google Scholar 

  18. Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y, Xu K, Wang Y, Wu A (2011) IL-10 and TGF-beta2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep 38:3585–3591. https://doi.org/10.1007/s11033-010-0469-4

    Article  CAS  PubMed  Google Scholar 

  19. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341. https://doi.org/10.1016/j.ccell.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wahl M, Phillips JJ, Molinaro AM, Lin Y, Perry A, Haas-Kogan DA, Costello JF, Dayal M, Butowski N, Clarke JL, Prados M, Nelson S, Berger MS, Chang SM (2017) Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neurooncology 19:242–251. https://doi.org/10.1093/neuonc/now176

    Article  CAS  Google Scholar 

  21. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  22. Alonso MM, Gomez-Manzano C, Bekele BN, Yung WK, Fueyo J (2007) Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 67:11499–11504. https://doi.org/10.1158/0008-5472.CAN-07-5312

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5:102–114

    Article  CAS  PubMed  Google Scholar 

  24. Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3:198–210. https://doi.org/10.1016/j.gendis.2016.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wick W, Steinbach JP, Kuker WM, Dichgans J, Bamberg M, Weller M (2004) One week on/one week off: a novel active regimen of temozolomide for recurrent glioblastoma. Neurology 62:2113–2115. https://doi.org/10.1212/01.wnl.0000127617.89363.84

    Article  CAS  PubMed  Google Scholar 

  26. Brandes AA, Tosoni A, Cavallo G, Bertorelle R, Gioia V, Franceschi E, Biscuola M, Blatt V, Crino L, Ermani M, Gicno (2006) Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO). Br J Cancer 95:1155–1160. https://doi.org/10.1038/sj.bjc.6603376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Darlix A, Baumann C, Lorgis V, Ghiringhelli F, Blonski M, Chauffert B, Zouaoui S, Pinelli C, Rech F, Beauchesne P, Taillandier L (2013) Prolonged administration of adjuvant temozolomide improves survival in adult patients with glioblastoma. Anticancer Res 33:3467–3474

    CAS  PubMed  Google Scholar 

  28. Wick A, Felsberg J, Steinbach JP, Herrlinger U, Platten M, Blaschke B, Meyermann R, Reifenberger G, Weller M, Wick W (2007) Efficacy and tolerability of temozolomide in an alternating weekly regimen in patients with recurrent glioma. J Clin Oncol 25:3357–3361. https://doi.org/10.1200/JCO.2007.10.7722

    Article  CAS  PubMed  Google Scholar 

  29. Welzel G, Gehweiler J, Brehmer S, Appelt JU, von Deimling A, Seiz-Rosenhagen M, Schmiedek P, Wenz F, Giordano FA (2015) Metronomic chemotherapy with daily low-dose temozolomide and celecoxib in elderly patients with newly diagnosed glioblastoma multiforme: a retrospective analysis. J Neurooncol 124:265–273. https://doi.org/10.1007/s11060-015-1834-x

    Article  CAS  PubMed  Google Scholar 

  30. Bocci G, Kerbel RS (2016) Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nat Rev Clin Oncol 13:659–673. https://doi.org/10.1038/nrclinonc.2016.64

    Article  CAS  PubMed  Google Scholar 

  31. Andre N, Banavali S, Snihur Y, Pasquier E (2013) Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol 14:e239–e248. https://doi.org/10.1016/S1470-2045(13)70056-1

    Article  PubMed  Google Scholar 

  32. Kong DS, Lee JI, Kim WS, Son MJ, Lim DH, Kim ST, Park K, Kim JH, Eoh W, Nam DH (2006) A pilot study of metronomic temozolomide treatment in patients with recurrent temozolomide-refractory glioblastoma. Oncol Rep 16:1117–1121

    CAS  PubMed  Google Scholar 

  33. Gulley JL, Madan RA, Pachynski R, Mulders P, Sheikh NA, Trager J, Drake CG (2017) Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw261

    Article  PubMed  PubMed Central  Google Scholar 

  34. Margison GP, Santibanez Koref MF, Povey AC (2002) Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine. Mutagenesis 17:483–487. https://doi.org/10.1093/mutage/17.6.483

    Article  CAS  PubMed  Google Scholar 

  35. Daniel P, Sabri S, Chaddad A, Meehan B, Jean-Claude B, Rak J, Abdulkarim BS (2019) Temozolomide induced hypermutation in glioma: evolutionary mechanisms and therapeutic opportunities. Front Oncol 9:41. https://doi.org/10.3389/fonc.2019.00041

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598. https://doi.org/10.1038/nrc3342

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Cazzato E, Ladewig E, Frattini V, Rosenbloom DI, Zairis S, Abate F, Liu Z, Elliott O, Shin YJ, Lee JK, Lee IH, Park WY, Eoli M, Blumberg AJ, Lasorella A, Nam DH, Finocchiaro G, Iavarone A, Rabadan R (2016) Clonal evolution of glioblastoma under therapy. Nat Genet 48:768–776. https://doi.org/10.1038/ng.3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Indraccolo S, Lombardi G, Fassan M, Pasqualini L, Giunco S, Marcato R, Gasparini A, Candiotto C, Nalio S, Fiduccia P, Fanelli GN, Pambuku A, Della Puppa A, D’Avella D, Bonaldi L, Gardiman MP, Bertorelle R, De Rossi A, Zagonel V (2019) Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin Cancer Res 25:1828–1837. https://doi.org/10.1158/1078-0432.CCR-18-1892

    Article  CAS  PubMed  Google Scholar 

  39. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJM, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193. https://doi.org/10.1126/science.1239947

    Article  CAS  PubMed  Google Scholar 

  40. Choi S, Yu Y, Grimmer MR, Wahl M, Chang SM, Costello JF (2018) Temozolomide-associated hypermutation in gliomas. Neurooncology 20:1300–1309. https://doi.org/10.1093/neuonc/noy016

    Article  CAS  Google Scholar 

  41. van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, Malmstrom A, Hallbeck M, Heimans JJ, Kloezeman JJ, Stenmark-Askmalm M, Lamfers ML, Saito N, Aburatani H, Mukasa A, Berger MS, Soderkvist P, Taylor BS, Molinaro AM, Wesseling P, Reijneveld JC, Chang SM, Ylstra B, Costello JF (2015) Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 129:597–607. https://doi.org/10.1007/s00401-015-1403-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park CK, Kim JE, Kim JY, Song SW, Kim JW, Choi SH, Kim TM, Lee SH, Kim IH, Park SH (2012) The changes in MGMT promoter methylation status in initial and recurrent glioblastomas. Transl Oncol 5:393–397. https://doi.org/10.1593/tlo.12253

    Article  PubMed  PubMed Central  Google Scholar 

  43. Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, Schackert G, Kreth FW, Pietsch T, Loffler M, Weller M, Reifenberger G, Tonn JC, German Glioma N (2011) Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 129:659–670. https://doi.org/10.1002/ijc.26083

    Article  CAS  PubMed  Google Scholar 

  44. Struve N, Binder ZA, Stead LF, Brend T, Bagley SJ, Faulkner C, Ott L, Muller-Goebel J, Weik AS, Hoffer K, Krug L, Rieckmann T, Bussmann L, Henze M, Morrissette JJD, Kurian KM, Schuller U, Petersen C, Rothkamm K, DM OR, Short SC, Kriegs M (2020) EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene 39:3041–3055. https://doi.org/10.1038/s41388-020-1208-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357. https://doi.org/10.1200/JCO.2005.00.240

    Article  CAS  PubMed  Google Scholar 

  46. Suryadevara CM, Desai R, Abel ML, Riccione KA, Batich KA, Shen SH, Chongsathidkiet P, Gedeon PC, Elsamadicy AA, Snyder DJ, Herndon JE 2, Healy P, Archer GE, Choi BD, Fecci PE, Sampson JH, Sanchez-Perez L (2018) Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. Oncoimmunology 7:e1434464. https://doi.org/10.1080/2162402X.2018.1434464

    Article  PubMed  PubMed Central  Google Scholar 

  47. Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L, Aldape K, Gilbert M, Hassenbusch SJ, Sawaya R, Schmittling B, Archer GE, Mitchell DA, Bigner DD, Sampson JH (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neurooncology 10:98–103. https://doi.org/10.1215/15228517-2007-046

    Article  CAS  Google Scholar 

  48. Neyns B, Tosoni A, Hwu WJ, Reardon DA (2010) Dose-dense temozolomide regimens: antitumor activity, toxicity, and immunomodulatory effects. Cancer 116:2868–2877. https://doi.org/10.1002/cncr.25035

    Article  CAS  PubMed  Google Scholar 

  49. Lin AJ, Campian JL, Hui C, Rudra S, Rao YJ, Thotala D, Hallahan D, Huang J (2018) Impact of concurrent versus adjuvant chemotherapy on the severity and duration of lymphopenia in glioma patients treated with radiation therapy. J Neurooncol 136:403–411. https://doi.org/10.1007/s11060-017-2668-5

    Article  PubMed  Google Scholar 

  50. Fadul CE, Fisher JL, Gui J, Hampton TH, Cote AL, Ernstoff MS (2011) Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neurooncology 13:393–400. https://doi.org/10.1093/neuonc/noq204

    Article  CAS  Google Scholar 

  51. Su YB, Sohn S, Krown SE, Livingston PO, Wolchok JD, Quinn C, Williams L, Foster T, Sepkowitz KA, Chapman PB (2004) Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol 22:610–616. https://doi.org/10.1200/JCO.2004.07.060

    Article  CAS  PubMed  Google Scholar 

  52. Briegert M, Kaina B (2007) Human monocytes, but not dendritic cells derived from them, are defective in base excision repair and hypersensitive to methylating agents. Cancer Res 67:26–31. https://doi.org/10.1158/0008-5472.CAN-06-3712

    Article  CAS  PubMed  Google Scholar 

  53. Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634. https://doi.org/10.1007/s00262-009-0671-1

    Article  CAS  PubMed  Google Scholar 

  54. Karachi A, Yang C, Dastmalchi F, Sayour EJ, Huang J, Azari H, Long Y, Flores C, Mitchell DA, Rahman M (2019) Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Neurooncology 21:730–741. https://doi.org/10.1093/neuonc/noz015

    Article  CAS  Google Scholar 

  55. Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE, Mitchell DA, Reardon DA, Sawaya R, Schmittling R, Shi W, Vredenburgh JJ, Bigner DD, Heimberger AB (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neurooncology 13:324–333. https://doi.org/10.1093/neuonc/noq157

    Article  CAS  Google Scholar 

  56. Heynckes S, Daka K, Franco P, Gaebelein A, Frenking JH, Doria-Medina R, Mader I, Delev D, Schnell O, Heiland DH (2019) Crosslink between temozolomide and PD-L1 immune-checkpoint inhibition in glioblastoma multiforme. BMC Cancer 19:117. https://doi.org/10.1186/s12885-019-5308-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, Congdon KL, Archer GE, Desjardins A, Friedman AH, Friedman HS, Herndon JE 2, McLendon RE, Reardon DA, Vredenburgh JJ, Bigner DD, Sampson JH (2011) Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118:3003–3012. https://doi.org/10.1182/blood-2011-02-334565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, Reap EA, Desjardins A, Friedman AH, Friedman HS, Herndon JE 2, Coan A, McLendon RE, Reardon DA, Vredenburgh JJ, Bigner DD, Mitchell DA (2012) A pilot study of IL-2Ralpha blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS ONE 7:e31046. https://doi.org/10.1371/journal.pone.0031046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS, Hong YK (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17:143–153. https://doi.org/10.1128/CVI.00292-09

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figure for this publication was created with Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the conception or design of the work. KMH preformed the literature search, drafted and revised the manuscript and JHS assisted in revisions. Both authors approved the documents for submission.

Corresponding author

Correspondence to John H. Sampson.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotchkiss, K.M., Sampson, J.H. Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor . J Neurooncol 151, 55–62 (2021). https://doi.org/10.1007/s11060-020-03598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03598-2

Keywords

Navigation