Skip to main content

Advertisement

Log in

PD-1/PD-L1 and immune-related gene expression pattern in pediatric malignant brain tumors: clinical correlation with survival data in Korean population

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

PD-L1 expression has been evaluated as a predictive biomarker for immunotherapy in numerous tumor types. However, very limited data are available in pediatric brain tumors. The aim of this study was to characterize PD-1 and PD-L1 expressions of four pediatric malignant brain tumors and gene expression profile.

Methods

This study included 89 pediatric patients receiving standard treatment at Seoul National University Children’s Hospital and Seoul National University Bundang Hospital between 1990 and 2014: atypical teratoid/rhabdoid tumor (AT/RT) 20; ependymoma (EPN) 20; high grade glioma (HGG) 21; and medulloblastoma (MBL) 28. We performed immunohistochemistry assays for PD-1 and PD-L1. To characterize the gene expression, a custom immune-response focused gene panel was used.

Results

PD-1 expression was positive in 7 (35%) AT/RT, 7 (35%) EPN, 4 (19%) HGG, and 3 (11%) MBL patients. PD-L1 expression was positive in 8 (40%) AT/RT, 4 (20%) EPN, and 4 (19%) HGG; negative in all MBL patients. There was no statistically significant difference in the overall survival of PD-L1 positive patients. The gene expression analysis demonstrated differences in two clustering functional categories: cell–cell signaling and antigen presentation pathway.

Conclusions

AT/RT, EPN, and HGG showed a relatively higher expression rate of PD-L1 (19–40%). This suggests these tumor types might be good candidates for PD-1 checkpoint blockade. We determined that gene expression may potentially serve as a molecular tool in predicting which patients will respond to immunotherapy. Further investigation is required to better understand the predictive and prognostic role of PD-L1 in pediatric brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54:307–314. https://doi.org/10.1007/s00262-004-0593-x

    Article  PubMed  CAS  Google Scholar 

  2. Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347. https://doi.org/10.1038/nri1349

    Article  PubMed  CAS  Google Scholar 

  3. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856. https://doi.org/10.1158/1535-7163.mct-14-0983

    Article  PubMed  CAS  Google Scholar 

  7. Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K, Tsushima F, Otsuki N, Yagita H, Azuma M, Nakajima Y (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11:2947–2953. https://doi.org/10.1158/1078-0432.CCR-04-1469

    Article  PubMed  CAS  Google Scholar 

  8. Ring EK, Markert JM, Gillespie GY, Friedman GK (2017) Checkpoint proteins in pediatric brain and extracranial solid tumors: opportunities for immunotherapy. Clin Cancer Res 23:342–350. https://doi.org/10.1158/1078-0432.CCR-16-1829

    Article  PubMed  CAS  Google Scholar 

  9. Chowdhury F, Dunn S, Mitchell S, Mellows T, Ashton-Key M, Gray JC (2015) PD-L1 and CD8 + PD1 + lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. Oncoimmunology 4:e1029701. https://doi.org/10.1080/2162402x.2015.1029701

    Article  Google Scholar 

  10. Kim C, Kim EK, Jung H, Chon HJ, Han JW, Shin KH, Hu H, Kim KS, Choi YD, Kim S, Lee YH, Suh JS, Ahn JB, Chung HC, Noh SH, Rha SY, Kim SH, Kim HS (2016) Prognostic implications of PD-L1 expression in patients with soft tissue sarcoma. BMC Cancer 16:434. https://doi.org/10.1186/s12885-016-2451-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Routh JC, Ashley RA, Sebo TJ, Lohse CM, Husmann DA, Kramer SA, Kwon ED (2008) B7-H1 expression in Wilms tumor: correlation with tumor biology and disease recurrence. J Urol 179:1954–1959. https://doi.org/10.1016/j.juro.2008.01.056 (discussion 1959–1960)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aoki T, Hino M, Koh K, Kyushiki M, Kishimoto H, Arakawa Y, Hanada R, Kawashima H, Kurihara J, Shimojo N, Motohashi S (2016) Low frequency of programmed death ligand 1 expression in pediatric cancers. Pediatr Blood Cancer 63:1461–1464. https://doi.org/10.1002/pbc.26018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Binder DC, Davis AA, Wainwright DA (2016) Immunotherapy for cancer in the central nervous system: current and future directions. Oncoimmunology 5:e1082027. https://doi.org/10.1080/2162402X.2015.1082027

    Article  PubMed  CAS  Google Scholar 

  14. Patel S, Bhatnagar A, Wear C, Osiro S, Gabriel A, Kimball D, John A, Fields PJ, Tubbs RS, Loukas M (2014) Are pediatric brain tumors on the rise in the USA? Significant incidence and survival findings from the SEER database analysis. Childs Nerv Syst 30:147–154. https://doi.org/10.1007/s00381-013-2307-1

    Article  PubMed  Google Scholar 

  15. Nabors LB, Ammirati M, Bierman PJ, Brem H, Butowski N, Chamberlain MC, DeAngelis LM, Fenstermaker RA, Friedman A, Gilbert MR, Hesser D, Holdhoff M, Junck L, Lawson R, Loeffler JS, Maor MH, Moots PL, Morrison T, Mrugala MM, Newton HB, Portnow J, Raizer JJ, Recht L, Shrieve DC, Sills AK Jr, Tran D, Tran N, Vrionis FD, Wen PY, McMillian N, Ho M, National Comprehensive Cancer Network (2013) Central nervous system cancers. J Natl Compr Canc Netw 11:1114–1151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, Grundy R (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786. https://doi.org/10.1158/1541-7786.MCR-08-0584

    Article  PubMed  CAS  Google Scholar 

  17. Majzner RG, Simon JS, Grosso JF, Martinez D, Pawel B, Santi-Vincini M, Merchant MS, Sorensen P, Mackall CL, Maris JM (2015) Assessment of PD-L1 expression and tumor-associated lymphocytes in pediatric cancer tissues. Cancer Res. https://doi.org/10.1158/1538-7445.Am2015-249

    Article  Google Scholar 

  18. Garber ST, Hashimoto Y, Weathers SP, Xiu J, Gatalica Z, Verhaak RG, Zhou S, Fuller GN, Khasraw M, de Groot J, Reddy SK, Spetzler D, Heimberger AB (2016) Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-Oncol 18:1357–1366. https://doi.org/10.1093/neuonc/now132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Murata D, Mineharu Y, Arakawa Y, Liu B, Tanji M, Yamaguchi M, Fujimoto KI, Fukui N, Terada Y, Yokogawa R, Yamaguchi M, Minamiguchi S, Miyamoto S (2017) High programmed cell death 1 ligand-1 expression: association with CD8 + T-cell infiltration and poor prognosis in human medulloblastoma. J Neurosurg. https://doi.org/10.3171/2016.11.JNS16991

    Article  PubMed  Google Scholar 

  20. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8 + T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365. https://doi.org/10.1073/pnas.0611533104

    Article  PubMed  CAS  Google Scholar 

  21. Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, Okazaki T, Tokura Y (2010) Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116:1757–1766. https://doi.org/10.1002/cncr.24899

    Article  PubMed  Google Scholar 

  22. Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173–1182. https://doi.org/10.1007/s00262-006-0266-z

    Article  PubMed  CAS  Google Scholar 

  23. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157. https://doi.org/10.1158/1078-0432.ccr-06-2746

    Article  PubMed  CAS  Google Scholar 

  24. Zeng Z, Shi F, Zhou L, Zhang MN, Chen Y, Chang XJ, Lu YY, Bai WL, Qu JH, Wang CP, Wang H, Lou M, Wang FS, Lv JY, Yang YP (2011) Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS ONE 6:e23621. https://doi.org/10.1371/journal.pone.0023621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by research funding from Merck Sharp & Dohme Corp. (06-2014-249, to Chae-Yong Kim and 06-2015-0060, to Seung-Ki Kim).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Ki Kim or Chae-Yong Kim.

Ethics declarations

Conflict of interest

Jennifer H Yearley, Lakshmanan Annamalai, Wendy Blumenschein, Manjiri Sathe, and Terrill McClanahan are employees of Merck Sharp & Dohme. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, K., Koh, E.J., Choi, E.J. et al. PD-1/PD-L1 and immune-related gene expression pattern in pediatric malignant brain tumors: clinical correlation with survival data in Korean population. J Neurooncol 139, 281–291 (2018). https://doi.org/10.1007/s11060-018-2886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2886-5

Keywords

Navigation