Skip to main content

Advertisement

Log in

New therapeutic approaches for brainstem tumors: a comparison of delivery routes using nanoliposomal irinotecan in an animal model

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Despite the advances in imaging, surgery and radiotherapy, the majority of patients with brainstem gliomas die within 2 years after initial diagnosis. Factors that contribute to the dismal prognosis of these patients include the infiltrative nature and anatomic location in an eloquent area of the brain, which prevents total surgical resection and the presence of the blood–brain barrier (BBB), which reduces the distribution of systemically administered agents. The development of new therapeutic approaches which can circumvent the BBB is a potential path to improve outcomes for these children. Convection-enhanced delivery (CED) and intranasal delivery (IND) are strategies that permit direct drug delivery into the central nervous system and are an alternative to intravenous injection (IV). We treated rats bearing human brainstem tumor xenografts with nanoliposomal irinotecan (CPT-11) using CED, IND, and IV. A single treatment of CED irinotecan had a similar effect on overall survival as multiple treatments by IV route. IND CPT-11 showed significantly increased survival of animals with brainstem tumors, and demonstrated the promise of this non-invasive approach of drug delivery bypassing the BBB when combined with nanoliposomal chemotherapy. Our results indicated that using CED and IND of nanoliposomal therapy increase likelihood of practical therapeutic approach for the treatment of brainstem gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7:241–248. https://doi.org/10.1016/S1470-2045(06)70615-5

    Article  PubMed  Google Scholar 

  2. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, Morrison A, Lewis P, Bouffet E, Bartels U, Zuccaro J, Agnihotri S, Ryall S, Barszczyk M, Chornenkyy Y, Bourgey M, Bourque G, Montpetit A, Cordero F, Castelo-Branco P, Mangerel J, Tabori U, Ho KC, Huang A, Taylor KR, Mackay A, Bendel AE, Nazarian J, Fangusaro JR, Karajannis MA, Zagzag D, Foreman NK, Donson A, Hegert JV, Smith A, Chan J, Lafay-Cousin L, Dunn S, Hukin J, Dunham C, Scheinemann K, Michaud J, Zelcer S, Ramsay D, Cain J, Brennan C, Souweidane MM, Jones C, Allis CD, Brudno M, Becher O, Hawkins C (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46:451–456. https://doi.org/10.1038/ng.2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goodwin CR, Xu R, Iyer R, Sankey EW, Liu A, Abu-Bonsrah N, Sarabia-Estrada R, Frazier JL, Sciubba DM, Jallo GI (2016) Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas. Clin Neurol Neurosurg 142:120–127. https://doi.org/10.1016/j.clineuro.2016.01.007

    Article  PubMed  Google Scholar 

  4. Frazier JL, Lee J, Thomale UW, Noggle JC, Cohen KJ, Jallo GI (2009) Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg Pediatr 3:259–269. https://doi.org/10.3171/2008.11.PEDS08281

    Article  PubMed  Google Scholar 

  5. Han SJ, Bankiewicz K, Butowski NA, Larson PS, Aghi MK (2016) Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system. Expert Rev Neurother 16:635–639. https://doi.org/10.1080/14737175.14732016.11175939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen PY, Ozawa T, Drummond DC, Kalra A, Fitzgerald JB, Kirpotin DB, Wei KC, Butowski N, Prados MD, Berger MS, Forsayeth JR, Bankiewicz K, James CD (2013) Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neuro Oncol 15:189–197. https://doi.org/10.1093/neuonc/nos305

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami K, Kawakami M, Kioi M, Husain SR, Puri RK (2004) Distribution kinetics of targeted cytotoxin in glioma by bolus or convection-enhanced delivery in a murine model. J Neurosurg 101:1004–1011. https://doi.org/10.3171/jns.2004.101.6.1004

    Article  CAS  PubMed  Google Scholar 

  8. Saito R, Krauze MT, Noble CO, Drummond DC, Kirpotin DB, Berger MS, Park JW, Bankiewicz KS (2006) Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro Oncol 8:205–214. https://doi.org/10.1215/15228517-2006-001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS (2008) Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 5:123–127. https://doi.org/10.1016/j.nurt.2007.10.064

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK (2017) Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 126:191–200. https://doi.org/10.3171/2016.1.jns151591

    Article  PubMed  Google Scholar 

  11. Noble CO, Krauze MT, Drummond DC, Forsayeth J, Hayes ME, Beyer J, Hadaczek P, Berger MS, Kirpotin DB, Bankiewicz KS, Park JW (2014) Pharmacokinetics, tumor accumulation and antitumor activity of nanoliposomal irinotecan following systemic treatment of intracranial tumors. Nanomedicine 9:2099–2108. https://doi.org/10.2217/nnm.13.201

    Article  CAS  PubMed  Google Scholar 

  12. Noble CO, Krauze MT, Drummond DC, Yamashita Y, Saito R, Berger MS, Kirpotin DB, Bankiewicz KS, Park JW (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 66:2801–2806. https://doi.org/10.1158/0008-5472.can-05-3535

    Article  CAS  PubMed  Google Scholar 

  13. Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS (2009) Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol 11:80–91. https://doi.org/10.1215/15228517-2008-075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB (2006) Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res 66:3271–3277. https://doi.org/10.1158/0008-5472.can-05-4007

    Article  CAS  PubMed  Google Scholar 

  15. Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner RA, Chiu CF, Schwartsmann G, Siveke JT, Braiteh F, Moyo V, Belanger B, Dhindsa N, Bayever E, Von Hoff DD, Chen LT (2016) Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387:545–557. https://doi.org/10.1016/s0140-6736(15)00986-1

    Article  CAS  PubMed  Google Scholar 

  16. Dhuria SV, Hanson LR, Frey WH 2nd (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–1673 https://doi.org/10.1002/jps.21924

    Article  CAS  PubMed  Google Scholar 

  17. Shingaki T, Inoue D, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, Yamashita S (2010) Transnasal delivery of methotrexate to brain tumors in rats: a new strategy for brain tumor chemotherapy. Mol Pharm 7:1561–1568. https://doi.org/10.1021/mp900275s

    Article  CAS  PubMed  Google Scholar 

  18. Sakane T, Yamashita S, Yata N, Sezaki H (1999) Transnasal delivery of 5-fluorouracil to the brain in the rat. J Drug Target 7:233–240. https://doi.org/10.3109/10611869909085506

    Article  CAS  PubMed  Google Scholar 

  19. Wang D, Gao Y, Yun L (2006) Study on brain targeting of raltitrexed following intranasal administration in rats. Cancer Chemother Pharmacol 57:97–104. https://doi.org/10.1007/s00280-005-0018-3

    Article  PubMed  Google Scholar 

  20. Hashizume R, Ozawa T, Dinca EB, Banerjee A, Prados MD, James CD, Gupta N (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J Neurooncol 96:151–159. https://doi.org/10.1007/s11060-009-9954-9

    Article  PubMed  Google Scholar 

  21. Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, Berger MS, James CD (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 107:610–616. https://doi.org/10.3171/JNS-07/09/0610

    Article  CAS  PubMed  Google Scholar 

  22. Sarkaria JN, Yang L, Grogan PT, Kitange GJ, Carlson BL, Schroeder MA, Galanis E, Giannini C, Wu W, Dinca EB, James CD (2007) Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther 6:1167–1174. https://doi.org/10.1158/1535-7163.mct-06-0691

    Article  CAS  PubMed  Google Scholar 

  23. Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH 2nd, Deen DF (2008) New therapeutic approach for brain tumors: intranasal delivery of telomerase inhibitor GRN163. Neuro Oncol 10:112–120 https://doi.org/10.1215/15228517-2007-052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serwer L, Hashizume R, Ozawa T, James CD (2010) Systemic and local drug delivery for treating diseases of the central nervous system in rodent models. J Vis Exp. https://doi.org/10.3791/1992

    PubMed  PubMed Central  Google Scholar 

  25. Hashizume R, Smirnov I, Liu S et al (2012) Characterization of a diffuse intrinsic pontine cell line: implications for future investigations and treatment. J Neurooncol 110:305–313. https://doi.org/10.1007/s11060-012-0973-6

    Article  PubMed  Google Scholar 

  26. Aoki Y, Hashizume R, Ozawa T, Banerjee A, Prados M, James CD, Gupta N (2012) An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing. J Neurooncol 108:29–35. https://doi.org/10.1007/s11060-011-0796-x

    Article  PubMed  Google Scholar 

  27. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, Fang D, Huang X, Tom MW, Ngo V, Solomon D, Mueller S, Paris PL, Zhang Z, Petritsch C, Gupta N, Waldman TA, James CD (2014) Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20:1394–1396. https://doi.org/10.1038/nm.3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12:871–881. https://doi.org/10.1093/neuonc/nop054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tafaghodi M, Jaafari MR, Tabassi SAJ (2006) Nasal immunization studies using liposomes loaded with tetanus toxoid and CpG-ODN. Eur J Pharm Biopharm 64:138–145 https://doi.org/10.1016/j.ejpb.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  30. Chen M, Li XR, Zhou YX, Yang KW, Chen XW, Deng Q, Liu Y, Ren LJ (2009) Improved absorption of salmon calcitonin by ultraflexible liposomes through intranasal delivery. Peptides 30:1288–1295. https://doi.org/10.1016/j.peptides.2009.03.018

    Article  CAS  PubMed  Google Scholar 

  31. University of California in San Francisco. CED with irinotecan liposome injection using real time imaging in children with DIPG. https://clinicaltrials.gov/ct2/show/NCT03086616. NML Identifier: NCT03086616. Accessed 14 June 2017

  32. Saito R, Bringas J, McKnight TR, Wendland MF, Manot C, Drummond DC, Kirpotin DB, Park JW, Berger MS, Bankiewiez KS (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 164:2573–2579

    Google Scholar 

  33. Krauze MT, McKnight TR, Yamashita Y, Bringas J, Noble CO, Saito R, Geletneky K, Forsayeth J, Berger MS, Jackson P, Park JW, Bankiewicz KS (2005) Real time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging. Brain Res Brain Res Protoc 16:20–26. https://doi.org/10.1016/j.brainresprot.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  34. Saito R, Krauze MT, Bringas JR, Noble C, McKnight TR, Jackson P, Wendland MF, Mamot C, Drummond DC, Kirpotin DB, Hong K, Berger MS, Park JW, Bankiewicz KS (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196:381–389. https://doi.org/10.1016/j.expneurol.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  35. Butowski N, Bankiewicz K, Kells A et al (2014) A phase I study of convection-enhanced delivery of liposomal-irinotecan using real-time imaging with gadolinium in patients with recurrent high grade glioma. Neuro-Oncology. https://doi.org/10.1093/neuonc/nou206.46

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Pediatric Brain Tumor Foundation Institute Award to the University of California San Francisco, NIH Grants RO1NS093079, and by a generous gift from the Segal Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintaro Hashizume.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, N., Liu, S., He, X. et al. New therapeutic approaches for brainstem tumors: a comparison of delivery routes using nanoliposomal irinotecan in an animal model. J Neurooncol 136, 475–484 (2018). https://doi.org/10.1007/s11060-017-2681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2681-8

Keywords

Navigation