Skip to main content
Log in

IDH mutation and 1p19q codeletion distinguish two radiological patterns of diffuse low-grade gliomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Diffuse low-grade gliomas (DLGG) prognosis is variable, depending on several factors, including the isocitrate dehydrogenase (IDH) mutation and the 1p19q codeletion. A few studies suggested associations between these parameters and tumor radiological characteristics including topography. Our aim was analyzing the correlations between the IDH and 1p19q statuses and the tumor intracerebral distribution (at the lobar and voxel levels), volume, and borders. We conducted a retrospective, monocentric study on a consecutive series of 198 DLGG patients. The IDH and 1p19q statuses were recorded. The pre-treatment magnetic resonance FLAIR imagings were reviewed for determination of lobar topography, tumor volume, and characterisation of tumor borders (sharp or indistinct). We conducted a voxel-based lesion-symptom mapping analysis to investigate the correlations between the IDH and 1p19q statuses and topography at the voxel level. The IDH mutation and 1p19q statuses were correlated with the tumor topography defined using lobar anatomy (p < 0.001 and p = 0.004, respectively). Frontal tumors were more frequently IDH-mutant (87.1 vs. 57.4%) and 1p19q codeleted (45.2 vs. 17.0%) than temporo-insular lesions. At the voxel level, these associations were not found. Tumors with sharp borders were more frequently IDH-mutant (p = 0.001) while tumors with indistinct borders were more frequently IDH wild-type and 1p19q non-codeleted (p < 0.001). Larger tumors at diagnosis (possibly linked to a slower growth rate) were more frequently IDH-mutant (p < 0.001). IDH wild-type, 1p19q non-codeleted temporo-insular tumors are distinct from IDH-mutant, 1p19q codeleted frontal tumors. Further studies are needed to determine whether the therapeutic strategy should be adapted to each pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DLGG:

Diffuse low-grade gliomas

IDH:

Isocitrate dehydrogenase

VLSM:

Voxel-based lesion-symptom mapping

LOH:

Loss of heterozygosity

MNI:

Montreal National Institute

OR:

Odd-ratio

PCR:

Polymerase chain reaction

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  PubMed  Google Scholar 

  3. Capelle L, Fontaine D, Mandonnet E et al (2013) Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J Neurosurg 118(6):1157–1168

    Article  PubMed  Google Scholar 

  4. Mandonnet E, Delattre JY, Tanguy ML et al (2003) Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 53(4):524–528

    Article  PubMed  Google Scholar 

  5. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brat DJ, Verhaak RGW, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26):2481–2498

    Article  CAS  PubMed  Google Scholar 

  7. Kaloshi G, Benouaich-Amiel A, Diakite F et al (2007) Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 68(21):1831–1836

    Article  CAS  PubMed  Google Scholar 

  8. Metellus P, Coulibaly B, Colin C et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120(6):719–729

    Article  PubMed  Google Scholar 

  9. Gozé C, Blonski M, Le Maistre G et al (2014) Imaging growth and isocitrate dehydrogenase 1 mutation are independent predictors for diffuse low-grade gliomas. Neuro Oncol 16(8):1100–1109

    Article  PubMed  PubMed Central  Google Scholar 

  10. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47(5):458–468

    Article  CAS  PubMed  Google Scholar 

  11. Ricard D, Kaloshi G, Amiel-Benouaich A et al (2007) Dynamic history of low-grade gliomas before and after temozolomide treatment. Ann Neurol 61(5):484–490

    Article  CAS  PubMed  Google Scholar 

  12. Pignatti F, van den Bent M, Curran D et al (2002) Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 20(8):2076–2084

    Article  PubMed  Google Scholar 

  13. Smith JS, Chang EF, Lamborn KR et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26(8):1338–1345

    Article  PubMed  Google Scholar 

  14. Duffau H, Capelle L (2004) Preferential brain locations of low-grade gliomas. Cancer 100(12):2622–2626

    Article  PubMed  Google Scholar 

  15. Ren X, Cui X, Lin S et al (2012) Co-deletion of chromosome 1p/19q and IDH1/2 mutation in glioma subsets of brain tumors in Chinese patients. PLoS ONE 7(3):e32764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parisot S, Darlix A, Baumann C et al (2016) A probabilistic atlas of diffuse WHO grade II glioma locations in the brain. PLoS ONE 11(1):e0144200

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ius T, Angelini E, Thiebaut de Schotten M et al (2011) Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage 56(3):992–1000

    Article  PubMed  Google Scholar 

  18. Jakola AS, Myrmel KS, Kloster R et al (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308(18):1881–1888

    Article  CAS  PubMed  Google Scholar 

  19. Stockhammer F, Misch M, Helms HJ et al (2012) IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 21(3):194–197

    Article  PubMed  Google Scholar 

  20. Laigle-Donadey F, Martin-Duverneuil N, Lejeune J et al (2004) Correlations between molecular profile and radiologic pattern in oligodendroglial tumors. Neurology 63(12):2360–2362

    Article  CAS  PubMed  Google Scholar 

  21. Gozé C, Rigau V, Gibert L et al (2009) Lack of complete 1p19q deletion in a consecutive series of 12 WHO grade II gliomas involving the insula: a marker of worse prognosis? J Neurooncol 91(1):1–5

    Article  PubMed  Google Scholar 

  22. Bates E, Wilson SM, Saygin AP et al (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6(5):448–450

    CAS  PubMed  Google Scholar 

  23. Wang YY, Zhang T, Li SW et al (2015) Mapping p53 mutations in low-grade glioma: a voxel-based neuroimaging analysis. Am J Neuroradiol 36(1):70–76

    Article  PubMed  Google Scholar 

  24. Wang Y, Fan X, Zhang C et al (2014) Anatomical specificity of O6-methylguanine DNA methyltransferase protein expression in glioblastomas. J Neurooncol 120(2):331–337

    Article  CAS  PubMed  Google Scholar 

  25. Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    Article  PubMed  Google Scholar 

  26. Viegas C, Moritz-Gasser S, Rigau V, Duffau H (2011) Occipital WHO grade II gliomas: oncological, surgical and functional considerations. Acta Neurochir 153(10):1907–1917

    Article  PubMed  Google Scholar 

  27. Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164(3):550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zlatescu MC, Tehrani-Yazdi A, Sasaki H et al (2001) Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res 61(18):6713–6715

    CAS  PubMed  Google Scholar 

  29. Mueller W, Hartmann C, Hoffmann A et al (2002) Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am J Pathol 161(1):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang L, Jiang T, Yuan F et al (2008) Correlations between molecular profile and tumor location in Chinese patients with oligodendroglial tumors. Clin Neurol Neurosurg 110(10):1020–1024

    Article  CAS  PubMed  Google Scholar 

  31. van Thuijl HF, Scheinin I, Sie D et al (2014) Spatial and temporal evolution of distal 10q deletion, a prognostically unfavorable event in diffuse low-grade gliomas. Genome Biol 15(9):471–483

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huse JT, Diamond EL, Wang L, Rosenblum MK (2015) Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true “oligoastrocytoma”? Acta Neuropathol 129(1):151–153

    Article  PubMed  Google Scholar 

  33. Desmurget M, Bonnetblanc F, Duffau H (2007) Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain 130(Pt 4):898–914

    Article  PubMed  Google Scholar 

  34. Jenkinson MD, du Plessis DG, Smith TS et al (2006) Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain 129(Pt 7):1884–1891

    Article  PubMed  Google Scholar 

  35. Megyesi JF, Kachur E, Lee DH et al (2004) Imaging correlates of molecular signatures in oligodendrogliomas. Clin Cancer Res 10(13):4303–4306

    Article  PubMed  Google Scholar 

  36. Kim JW, Park CK, Park SH et al (2011) Relationship between radiological characteristics and combined 1p and 19q deletion in World Health Organization grade III oligodendroglial tumours. J Neurol Neurosurg Psychiatry 82(2):224–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the SIRIC Montpellier Cancer for financial support (Grant «INCa-DGOS-Inserm 6045») and Dr Hélène de Forges for editing the manuscript.

Funding

This work was conducted with the financial support, as grants, of the SIRIC Montpellier Cancer (Grant «INCa-DGOS-Inserm 6045»).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Darlix.

Additional information

Amélie Darlix and Jérémy Deverdun have equally contributed to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darlix, A., Deverdun, J., Menjot de Champfleur, N. et al. IDH mutation and 1p19q codeletion distinguish two radiological patterns of diffuse low-grade gliomas. J Neurooncol 133, 37–45 (2017). https://doi.org/10.1007/s11060-017-2421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2421-0

Keywords

Navigation