Skip to main content
Log in

RalA is overactivated in medulloblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Medulloblastoma (MDB) represents a major form of malignant brain tumors in the pediatric population. A vast spectrum of research on MDB has advanced our understanding of the underlying mechanism, however, a significant need still exists to develop novel therapeutics on the basis of gaining new knowledge about the characteristics of cell signaling networks involved. The Ras signaling pathway, one of the most important proto-oncogenic pathways involved in human cancers, has been shown to be involved in the development of neurological malignancies. We have studied an important effector down-stream of Ras, namely RalA (Ras-Like), for the first time and revealed overactivation of RalA in MDB. Affinity precipitation analysis of active RalA (RalA-GTP) in eight MDB cell lines (DAOY, RES256, RES262, UW228-1, UW426, UW473, D283 and D425) revealed that the majority contained elevated levels of active RalA (RalA-GTP) as compared with fetal cerebellar tissue as a normal control. Additionally, total RalA levels were shown to be elevated in 20 MDB patient samples as compared to normal brain tissue. The overall expression of RalA, however, was comparable in cancerous and normal samples. Other important effectors of RalA pathway including RalA binding protein-1 (RalBP1) and protein phosphatase A (PP2A) down-stream of Ral and Aurora kinase A (AKA) as an upstream RalA activator were also investigated in MDB. Considering the lack of specific inhibitors for RalA, we used gene specific silencing in order to inhibit RalA expression. Using a lentivirus expressing anti-RalA shRNA we successfully inhibited RalA expression in MDB and observed a significant reduction in proliferation and invasiveness. Similar results were observed using inhibitors of AKA and geranyl–geranyl transferase (non-specific inhibitors of RalA signaling) in terms of loss of in vivo tumorigenicity in heterotopic nude mouse model. Finally, once tested in cells expressing CD133 (a marker for MDB cancer stem cells), higher levels of RalA activation was observed. These data not only bring RalA to light as an important contributor to the malignant phenotype of MDB but introduces this pathway as a novel target in the treatment of this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gajjar A, Packer RJ, Foreman NK et al (2013) Children’s oncology group’s 2013 blueprint for research: central nervous system tumors. Pediatr Blood Cancer 60:1022–1026

    Article  PubMed  Google Scholar 

  2. Dhall G (2009) Medulloblastoma. J Child Neurol 24:1418–1430

    Article  PubMed  Google Scholar 

  3. Rice JM (2006) Inducible and transmissible genetic events and pediatric tumors of the nervous system. J Radiat Res 47(Suppl B):B1–B11

    Article  CAS  PubMed  Google Scholar 

  4. Gibson P, Tong Y, Robinson G et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carlotti CG Jr, Smith C, Rutka JT (2008) The molecular genetics of medulloblastoma: an assessment of new therapeutic targets. Neurosurg Rev 31:359–368 (discussion 368–359)

    Article  PubMed  Google Scholar 

  6. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol 3:341–365

    Article  CAS  PubMed  Google Scholar 

  7. Rossi A, Caracciolo V, Russo G et al (2008) Medulloblastoma: from molecular pathology to therapy. Clin Cancer Res 14:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kool M, Korshunov A, Remke M et al (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol 123:473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilbertson RJ, Langdon JA, Hollander A et al (2006) Mutational analysis of PDGFR-RAS/MAPK pathway activation in childhood medulloblastoma. Eur J Cancer 42:646–649

    Article  CAS  PubMed  Google Scholar 

  10. MacDonald TJ, Brown KM, LaFleur B et al (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143–152

    Article  CAS  PubMed  Google Scholar 

  11. Wlodarski PK, Boszczyk A, Grajkowska W et al (2008) Implication of active Erk in the classic type of human medulloblastoma. Folia Neuropathol 46:117–122

    CAS  PubMed  Google Scholar 

  12. Abouantoun TJ, Castellino RC, MacDonald TJ (2011) Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. J Neurooncol 101:215–226

    Article  CAS  PubMed  Google Scholar 

  13. Mohan AL, Friedman MD, Ormond DR et al (2012) PI3K/mTOR signaling pathways in medulloblastoma. Anticancer Res 32:3141–3146

    CAS  PubMed  Google Scholar 

  14. Yuan L, Santi M, Rushing EJ et al (2010) ERK activation of p21 activated kinase-1 (Pak1) is critical for medulloblastoma cell migration. Clin Exp Metastasis 27:481–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bodemann BO, White MA (2008) Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer 8:133–140

    Article  CAS  PubMed  Google Scholar 

  16. Kashatus DF (2013) Ral GTPases in tumorigenesis: emerging from the shadows. Exp Cell Res 319:2337–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferro E, Trabalzini L (2010) RalGDS family members couple Ras to Ral signalling and that’s not all. Cell Signal 22:1804–1810

    Article  CAS  PubMed  Google Scholar 

  18. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  Google Scholar 

  19. Bamford S, Dawson E, Forbes S et al (2004) The COSMIC (catalogue of somatic mutations in cancer) database and website. Br J Cancer 91:355–358

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Leonardi P, Kassin E, Hernandez-Munoz I et al (2002) Human rgr: transforming activity and alteration in T cell malignancies. Oncogene 21:5108–5116

    Article  CAS  PubMed  Google Scholar 

  21. Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bodempudi V, Yamoutpoor F, Pan W et al (2009) Ral overactivation in malignant peripheral nerve sheath tumors. Mol Cell Biol 29:3964–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Male H, Patel V, Jacob MA et al (2012) Inhibition of RalA signaling pathway in treatment of non-small cell lung cancer. Lung Cancer 77:252–259

    Article  PubMed  Google Scholar 

  24. Borrego-Diaz E, Terai K, Lialyte K et al (2012) Overactivation of Ras signaling pathway in CD133+ MPNST cells. J Neurooncol 108:423–434

    Article  CAS  PubMed  Google Scholar 

  25. Smith SC, Baras AS, Owens CR et al (2012) Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic characteristics in human cancer. Cancer Res 72:3480–3491

    Article  CAS  PubMed  Google Scholar 

  26. Pan W, Bodempudi V, Esfandyari T, Farassati F (2009) Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1. PLoS One 4:e6514

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang K, Bodempudi V, Liu Z et al (2012) Inhibition of mesothelin as a novel strategy for targeting cancer cells. PLoS One 7:e33214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raso A, Mascelli S, Biassoni R et al (2011) High levels of PROM1 (CD133) transcript are a potential predictor of poor prognosis in medulloblastoma. Neuro Oncol 13:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu CC, Chiou GY, Lee YY et al (2010) Medulloblastoma-derived tumor stem-like cells acquired resistance to TRAIL-induced apoptosis and radiosensitivity. Childs Nerv Syst 26:897–904

    Article  PubMed  Google Scholar 

  30. Read TA, Fogarty MP, Markant SL et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrandina G, Petrillo M, Bonanno G, Scambia G (2009) Targeting CD133 antigen in cancer. Expert Opin Ther Targets 13:823–837

    Article  CAS  PubMed  Google Scholar 

  32. Wu JC, Chen TY, Yu CT et al (2005) Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem 280:9013–9022

    Article  CAS  PubMed  Google Scholar 

  33. Mortlock AA, Keen NJ, Jung FH et al (2005) Progress in the development of selective inhibitors of Aurora kinases. Curr Top Med Chem 5:807–821

    Article  CAS  PubMed  Google Scholar 

  34. Falsetti SC, Wang DA, Peng H et al (2007) Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth. Mol Cell Biol 27:8003–8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lesh RE, Emala CW, Lee HT et al (2001) Inhibition of geranylgeranylation blocks agonist-induced actin reorganization in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 281:L824–L831

    CAS  PubMed  Google Scholar 

  36. Tong JJ, Yan Z, Jian R et al (2012) RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia. Oncol Lett 4:495–500

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Singhal SS, Yadav S, Singhal J et al (2005) Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. Biochem Pharmacol 70:481–488

    Article  CAS  PubMed  Google Scholar 

  38. Janigro D, Awasthi S, Awasthi YC et al (2007) RLIP76 in AED drug resistance. Epilepsia 48:1218–1219 (author reply 1219–1220)

    Article  PubMed  Google Scholar 

  39. Awasthi YC, Sharma R, Yadav S et al (2007) The non-ABC drug transporter RLIP76 (RALBP-1) plays a major role in the mechanisms of drug resistance. Curr Drug Metab 8:315–323

    Article  CAS  PubMed  Google Scholar 

  40. Awasthi S, Cheng J, Singhal SS et al (2000) Novel function of human RLIP76: ATP-dependent transport of glutathione conjugates and doxorubicin. BioChemistry 39:9327–9334

    Article  CAS  PubMed  Google Scholar 

  41. Sablina AA, Hahn WC (2007) The role of PP2A A subunits in tumor suppression. Cell Adh Migr 1:140–141

    Article  PubMed  PubMed Central  Google Scholar 

  42. Katayama H, Sen S (2010) Aurora kinase inhibitors as anticancer molecules. Biochim Biophys Acta 1799:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10

    Article  CAS  PubMed  Google Scholar 

  44. Lim KH, Brady DC, Kashatus DF et al (2010) Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol Cell Biol 30:508–523

    Article  CAS  PubMed  Google Scholar 

  45. Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101:816–829

    Article  CAS  PubMed  Google Scholar 

  46. Hugo H, Ackland ML, Blick T et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383

    Article  CAS  PubMed  Google Scholar 

  47. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318

    Article  CAS  PubMed  Google Scholar 

  48. Hazan RB, Qiao R, Keren R et al (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163

    Article  CAS  PubMed  Google Scholar 

  49. Utsuki S, Oka H, Sato Y et al (2004) E, N-cadherins and beta-catenin expression in medulloblastoma and atypical teratoid/rhabdoid tumor. Neurol Med Chir (Tokyo) 44:402–406 (discussion 407)

    Article  Google Scholar 

  50. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719

    Article  CAS  PubMed  Google Scholar 

  51. Francipane MG, Chandler J, Lagasse E (2013) Cancer stem cells: a moving target. Curr Pathobiol Rep 1:111–118

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li Z (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shu Q, Wong KK, Su JM et al (2008) Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26:1414–1424

    Article  PubMed  Google Scholar 

  54. Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alcantara Llaguno SR, Chen Y, McKay RM, Parada LF (2011) Stem cells in brain tumor development. Curr Top Dev Biol 94:15–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Faris Farassati dedicates this work to the honor of “Nicolas Marion Battaglia”. This work was supported by funding from Flight Attendant’s Medical Research Institute (FAMRI) and Saint Luke’s Hospital-Marion Bloch Foundation to Faris Farassati and Midwest Cancer Alliance (MCA) grant to Kevin Ginn and Faris Farassati and Children’s Mercy Cancer Center Auxiliary Grant to Kevin Ginn. We wish to express our gratitude for cooperation of Dr. Ossama Tawfik and Marcia Pressly at department of pathology and the staff of KUMC flow cytometry core, Richard Hastings and Alicia Zeiger. Parts of the preliminary work in this manuscript were presented at 2010 Society for Neuro-Oncology Scientific Meeting and Education Day (Montreal, Canada) and 2010 Children’s Oncology Group Fall Meeting (Dallas, TX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faris Farassati.

Ethics declarations

Conflict of interest

None of the authors has disclosed any financial conflict of interest with the content of this paper.

Additional information

Kevin F. Ginn, Ben Fangman, Amanda Wise and Daniel Ziazadeh are equal participation authors. Kaoru Terai, Kushal Shah, Robyn Gartrell, Brandon Ricke, Kyle Kimura and Sharad Mathur are equal participation authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginn, K.F., Fangman, B., Terai, K. et al. RalA is overactivated in medulloblastoma. J Neurooncol 130, 99–110 (2016). https://doi.org/10.1007/s11060-016-2236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2236-4

Keywords

Navigation