Skip to main content

Advertisement

Log in

A multi-resolution textural approach to diagnostic neuropathology reporting

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We present a computer aided diagnostic workflow focusing on two diagnostic branch points in neuropathology (intraoperative consultation and p53 status in tumor biopsy specimens) by means of texture analysis via discrete wavelet frames decomposition. For intraoperative consultation, our methodology is capable of classifying glioblastoma versus metastatic cancer by extracting textural features from the non-nuclei region of cytologic preparations based on the imaging characteristics of glial processes, which appear as anisotropic thin linear structures. For metastasis, these are homogeneous in appearance, thus suitable and extractable texture features distinguish the two tissue types. Experiments on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7 % for glioblastoma, 87.5 % for metastasis and 88.7 % overall. For p53 interpretation, we detect and classify p53 status by classifying staining intensity into strong, moderate, weak and negative sub-classes. We achieved this by developing a novel adaptive thresholding for detection, a two-step rule based on weighted color and intensity for the classification of positively and negatively stained nuclei, followed by texture classification to classify the positively stained nuclei into the strong, moderate and weak intensity sub-classes. Our detection method is able to correctly locate and distinguish the four types of cells, at 85 % average precision and 88 % average sensitivity rate. These classification methods on the other hand recorded 81 % accuracy in classifying the positive and negative cells, and 60 % accuracy in further classifying the positive cells into the three intensity groups, which is comparable with neuropathologists’ markings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barker FG 2nd, Davis RL, Chang SM, Prados MD (1996) Necrosis as a prognostic factor in glioblastoma multiforme. Cancer 77:1161–1166

    Article  PubMed  Google Scholar 

  2. Kraus JA, Lamszus K, Glesmann N, Beck M, Wolter M, Sabel M, Krex D, Klockgether T, Reifenberger G, Schlegel U (2001) Molecular genetic alterations in glioblastomas with oligodendroglial component. Acta Neuropathol 101:311–320

    CAS  PubMed  Google Scholar 

  3. He J, Mokhtari K, Sanson M, Marie Y, Kujas M, Huguet S, Leuraud P, Capelle L, Delattre JY, Poirier J, Hoang-Xuan K (2001) Glioblastomas with an oligodendroglial component: a pathological and molecular study. J Neuropathol Exp Neurol 60:863–871

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura H, Makino K, Kuratsu J (2011) Molecular and clinical analysis of glioblastoma with an oligodendroglial component (GBMO). Brain Tumor Pathol 28:185–190

    Article  CAS  PubMed  Google Scholar 

  5. Sahm F, Reuss D et al (2014) Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 128(4):551–559

    Article  CAS  PubMed  Google Scholar 

  6. Burger PC, Kleihues P (1989) Cytologic composition of the untreated glioblastoma with implications for evaluation of needle biopsies. Cancer 63:2014–2023

    Article  CAS  PubMed  Google Scholar 

  7. Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, Sure U, Wrede K, Nakazato Y, Tanaka Y, Vital A, Mariani L, Stawski R, Watanabe T, De Girolami U, Kleihues P, Ohgaki H (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177:2708–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Otero JJ, Rowitch D, Vandenberg S (2011) OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol 104(2):423–438

    Article  PubMed  Google Scholar 

  9. Weller M et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German glioma network. J Clin Oncol 27(34):5743–5750

    Article  CAS  PubMed  Google Scholar 

  10. Varga Z et al (2013) Assessment of HER2 status in breast cancer: overall positivity rate and accuracy by fluorescence in situ hybridization and immunohistochemistry in a single institution over 12 years: a quality control study. BMC Cancer 13:615

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raghavan R, Steart PV, Weller RO (1990) Cell proliferation patterns in the diagnosis of astrocytomas, anaplastic astrocytomas and glioblastoma multiforme: a Ki-67 study. Neuropathol Appl Neurobiol 16:123–133

    Article  CAS  PubMed  Google Scholar 

  12. Kyritsis AP, Bondy ML, Hess KR, Cunningham JE, Zhu D, Amos CJ, Yung WK, Levin VA, Bruner JM (1995) Prognostic significance of p53 immunoreactivity in patients with glioma. Clin Cancer Res 1:1617–1622

    CAS  PubMed  Google Scholar 

  13. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  CAS  PubMed  Google Scholar 

  14. Horbinski C, Miller CR, Perry A (2011) Gone FISHing: clinical lessons learned in brain tumor molecular diagnostics over the last decade. Brain Pathol 21:57–73

    Article  PubMed  Google Scholar 

  15. Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruner JM, Saya H, Moser RP (1991) Immunocytochemical detection of p53 in human gliomas. Mod Pathol 4:671–674

    CAS  PubMed  Google Scholar 

  17. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih Ie M, Kurman RJ (2011) Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol 24:1248–1253

    Article  CAS  PubMed  Google Scholar 

  18. Ren ZP, Olofsson T, Qu M, Hesselager G, Soussi T, Kalimo H, Smits A, Nister M (2007) Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors. J Neuropathol Exp Neurol 66:944–954

    Article  CAS  PubMed  Google Scholar 

  19. Sertel O, Lozanski G, Shana’ah A, Gurcan MN (2010) Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans Biomed Eng 57(10):2613–2616

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sertel O, Kong J, Lozanski G, Shanaah A, Gewirtz A, Racke F, Zhao J, Catalyurek U, Saltz JH, Gurcan M (2008) Computer-assisted grading of follicular lymphoma: high grade differentiation. Mod Pathol 21:371A–371A

    Google Scholar 

  21. Sertel O, Kong J, Lozanski G, Catalyurek U, Saltz JH, Gurcan MN (2008) Computerized microscopic image analysis of follicular lymphoma. Proc SPIE Med Imaging 6915:1–11

    Google Scholar 

  22. Samsi SS, Krishnamurthy AK, Groseclose M, Caprioli RM, Lozanski G, Gurcan MN (2009) Imaging mass spectrometry analysis for follicular lymphoma grading. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 6969–6972

  23. Samsi S, Lozanski G, Shana’ah A, Krishanmurthy AK, Gurcan MN (2010) Detection of follicles from IHC-stained slides of follicular lymphoma using iterative watershed. IEEE Trans Biomed Eng 57(10):2609–2612

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oger M, Belhomme P, Gurcan MN (2012) A general framework for the segmentation of follicular lymphoma virtual slides. Comput Med Imaging Graph 36(6):442–451

    Article  PubMed  PubMed Central  Google Scholar 

  25. Belkacem-Boussaid K, Sertel O, Lozanski G, Shana’aah A, Gurcan M (2009) Extraction of color features in the spectral domain to recognize centroblasts in histopathology. In: Proceedings of annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 3685–3688

  26. Akakin HC, Gurcan MN (2012) Content-based microscopic image retrieval system for multi-image queries. IEEE Trans Inf Technol Biomed 16(4):758–769

    Article  PubMed  PubMed Central  Google Scholar 

  27. Teodoro G, Sachetto R, Sertel O, Gurcan MN, Meira W, Catalyurek U, Ferreira R (2009) Coordinating the use of GPU and CPU for improving performance of compute intensive applications. In: Proceedings of IEEE international conference on cluster computing and workshops, pp 437–446

  28. Sertel O, Kong J, Shimada H, Catalyurek UV, Saltz JH, Gurcan MN (2009) Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recognit 42(6):1093–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz A, Sertel O, Ujaldon M, Catalyurek UV, Saltz J, Gurcan MN (2009) Stroma classification for neuroblastoma on graphics processors. Int J Data Min Bioinform 3(3):280–298

    Article  PubMed  Google Scholar 

  30. Ruiz A, Kong J, Ujaldon M, Boyer K, Saltz J, Gurcan M (2008) Pathological image segmentation for neuroblastoma using the GPU. In: Proceedings of 5th IEEE international symposium on biomedical imaging: from nano to macro, pp 296–299

  31. Gurcan M, Pan T, Shimada H, Saltz JH (2006) Image analysis for neuroblastoma classification: hysteresis thresholding for cell segmentation. Proceedings of APIII, Vancouver, BC

  32. Cambazoglu B, Sertel O, Kong J, Saltz JH, Gurcan MN, Catalyurek UV (2007) Efficient processing of pathological images using the grid: Computer-aided prognosis of neuroblastoma. In: Proceedings of challenges of large scale applications in distributed environments (CLADE), Monterey Bay, CA, pp 35–41

  33. Niazi MKK, Beamer G, Gurcan MN (2013) Detecting and characterizing cellular responses to Mycobacterium tuberculosis from histology slides. Cytometry A

  34. Niazi MKK, Satoskar A, Gurcan M (2013) An automated method for counting cytotoxic T-cells from CD8 stained images of renal biopsies. In: Proceedings of SPIE medical imaging: digital pathology 8676

  35. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  36. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4:1549–1560

    Article  CAS  PubMed  Google Scholar 

  37. Chen T, Ma K-K, Chen L-H (1998) Discrete wavelet frame representations of color texture features for image query. In: Proceedings of IEEE second workshop on multimedia signal processing, pp 45–50

  38. Liapis S, Tziritas G (2004) Color and texture image retrieval using chromaticity histograms and wavelet frames. IEEE Trans Multimed 6:676–686

    Article  Google Scholar 

  39. Depeursinge A, Sage D, Hidki A, Platon A, Poletti P-A, Unser M, Muller H (2007) Lung tissue classification using wavelet frames. In: Proceedings of 29th annual international conf erence of the IEEE Engineering in Medicine and Biology Society, pp 6259–6262

  40. Ahmad Fauzi MF (2009) Optimal discrete wavelet frames features for texture-based image retrieval applications. Lect Notes Comput Sci 5857:66–77

    Article  Google Scholar 

  41. Ahmad Fauzi MF, Lewis PH (2008) A multiscale approach to texture-based image retrieval. Pattern Anal Appl 11(2):141–157

    Article  Google Scholar 

  42. Ahmad Fauzi MF, Lewis PH (2010) Block-based against segmentation-based texture image retrieval. J Univ Comput Sci 16(3):402–423

    Google Scholar 

  43. Sertel O, Kong J, Catalyurek U, Lozanski G, Saltz J, Gurcan M (2009) Histopathological image analysis using model-based intermediate representations and color texture: follicular lymphoma grading. J Signal Process Syst 55:169–183

    Article  Google Scholar 

  44. Sertel O, Catalyurek UV, Shimada H, Gurcan MN (2009) A combined computerized classification system for whole-slide neuroblastoma histology: model-based structural features. In: International conference on medical image computing and computer assisted intervention, pp 7–18

  45. Sharma S, Deb P (2011) Intraoperative neurocytology of primary central nervous system neoplasia: a simplified and practical diagnostic approach. J Cytol 28(4):147–158

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bennett WP et al (1992) Mutational spectra and immunohistochemical analyses of p53 in human cancers. Chest 101(3 Suppl):19S–20S

    Article  CAS  PubMed  Google Scholar 

  47. Iggo R et al (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335(8691):675–679

    Article  CAS  PubMed  Google Scholar 

  48. Bartek J, Iggo R, Gannon J, Lane DP (1990) Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5(6):893–899

    CAS  PubMed  Google Scholar 

  49. Hashimoto T et al (1999) p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early-stage non-small cell lung carcinomas. Cancer Res 59(21):5572–5577

    CAS  PubMed  Google Scholar 

  50. Przygodzki RM et al (1996) Analysis of p53, K-ras-2, and C-raf-1 in pulmonary neuroendocrine tumors. Correlation with histological subtype and clinical outcome. Am J Pathol 148(5):1531–1541

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the Ohio State University Comprehensive Cancer Center using Pelotonia funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Faizal Ahmad Fauzi or José Javier Otero.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Mohammad Faizal Ahmad Fauzi and Hamza Numan Gokozan are first co-authors.

Mohammad Faizal Ahmad Fauzi and Hamza Numan Gokozan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauzi, M.F.A., Gokozan, H.N., Elder, B. et al. A multi-resolution textural approach to diagnostic neuropathology reporting. J Neurooncol 124, 393–402 (2015). https://doi.org/10.1007/s11060-015-1872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1872-4

Keywords

Navigation