Skip to main content

Advertisement

Log in

E-cadherin as a predictive marker of brain metastasis in non-small-cell lung cancer, and its regulation by pioglitazone in a preclinical model

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

It remains unclear whether patients with non-small-cell lung cancer (NSCLC) develop brain metastasis during or after standard therapy. We attempted to identify biological markers that predict brain metastasis, and investigated how to modulate expression of such markers. A case–control study of patients who were newly diagnosed with NSCLC and who had developed brain metastasis during follow-up was conducted between 2004 and 2009. These patients were compared with a control group of patients who had NSCLC but no evidence of brain metastasis. Immunohistochemical analysis of expression of Ki-67, p53, Bcl-2, Bax, vascular endothelial growth factor, epidermal growth factor receptor, caspase-3, and E-cadherin was conducted. The methylation status of the genes for O6-methylguanine-DNA-methyltransferase, tissue inhibitor of matrix metalloproteinase (TIMP)-2, TIMP-3, and death-associated protein-kinase was also determined, by use of a methylation-specific polymerase chain reaction. A significantly increased risk of developing brain metastasis was associated with the presence of primary tumors with low E-cadherin expression in patients with NSCLC. We also investigated the effects of pioglitazone, a peroxisome proliferator-activated receptor γ-activating drug, in tumor-bearing mouse models. We found that E-cadherin expression was proportional to pioglitazone exposure time. Interestingly, pioglitazone pretreatment before cancer cell inoculation prevented loss of E-cadherin expression and reduced expression of MMP9 and fibronectin, compared with the control group. E-cadherin expression could be a predictor of brain metastasis in patients with NSCLC. Preventive treatment with pioglitazone may be useful for modulating E-cadherin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegal R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Robnett TJ, Machtay M, Stevenson JP, Algazy KM, Hahn SM (2001) Factors affecting the risk of brain metastases after definitive chemoradiation for locally advanced non-small-cell lung carcinoma. J Clin Oncol 19:1344–1349

    PubMed  CAS  Google Scholar 

  3. Arnold SM, Young AB, Munn RK, Patchell RA, Nanayakkara N, Markesbery WR (1999) Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 in paired primary tumors and brain metastasis. Clin Cancer Res 5:4028–4033

    PubMed  CAS  Google Scholar 

  4. D’Amico TA, Aloia TA, Moore MB, Conlon DH, Herndon JE 2nd, Kinch MS, Harpole DH Jr (2001) Predicting the sites of metastases from lung cancer using molecular biologic markers. Ann Thorac Surg 72:1144–1148

    Article  PubMed  Google Scholar 

  5. Milas I, Komaki R, Hachiya T, Bubb RS, Ro JY, Langford L, Sawaya R, Putnam JB, Allen P, Cox JD, McDonnell TJ, Brock W, Hong WK, Roth JA, Milas L (2003) Epidermal growth factor receptor, cyclooxygenase-2, and BAX expression in the primary non-small-cell lung cancer and brain metastases. Clin Cancer Res 9:1070–1076

    PubMed  CAS  Google Scholar 

  6. Petersen I, Hidalgo A, Petersen S, Schlüns K, Schewe C, Pacyna-Gengelbach M, Goeze A, Krebber B, Knösel T, Kaufmann O, Szymas J, von Deimling A (2000) Chromosomal imbalances in brain metastases of solid tumors. Brain Pathol 10:395–401

    Article  PubMed  CAS  Google Scholar 

  7. Esteller M, Herman JG (2004) Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23:1–8

    Article  PubMed  CAS  Google Scholar 

  8. Li H, Lindenmeyer F, Grenet C, Opolon P, Menashi S, Soria C, Yeh P, Perricaudet M, Lu H (2001) AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther 12:515–526

    Article  PubMed  CAS  Google Scholar 

  9. Bachman KE, Herman JG, Corn PG, Merlo A, Costello JF, Cavenee WK, Bavlin SB, Graff JR (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 59:798–802

    PubMed  CAS  Google Scholar 

  10. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9:15–30

    Article  PubMed  CAS  Google Scholar 

  11. Thunnissen FB, Schuurbiers OC, den Bakker MA (2006) A critical appraisal of prognostic and predictive factors for common lung cancers. Histopathology 48:779–786

    Article  PubMed  CAS  Google Scholar 

  12. Lee JS, Yoon A, Kalapurakal SK, Ro JY, Lee JJ, Tu N, Hittelman WN, Hong WK (1995) Expression of p53 oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J Clin Oncol 13:1893–1903

    PubMed  CAS  Google Scholar 

  13. Koomägi R, Volm M (2000) Relationship between the expression of caspase-3 and the clinical outcome of patients with non-small-cell lung cancer. Anticancer Res 20:493–496

    PubMed  Google Scholar 

  14. Donnem T, Al-Saad S, Al-Shibli K, Delghandi MP, Persson M, Nilsen MN, Busund LT, Bremnes RM (2007) Inverse prognostic impact of angiogenic marker expression in tumor cells versus stromal cells in non small cell lung cancer. Clin Cancer Res 13:6649–6657

    Article  PubMed  CAS  Google Scholar 

  15. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:S9–S15

    Article  PubMed  CAS  Google Scholar 

  16. Yilmaz M, Christonfori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33

    Article  PubMed  Google Scholar 

  17. Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, Kim PJ, Owen RJ, Lang NP (2007) Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol 25:1476–1481

    Article  PubMed  CAS  Google Scholar 

  18. Choudhary R, Li H, Winn RA, Sorenson AL, Weiser-Evans MC, Nemenoff RA (2010) Peroxisome proliferator-activated receptor-γ inhibits transformed growth of non-small-cell lung cancer cells through selective suppression of snail. Neoplasia 12:224–234

    PubMed  CAS  Google Scholar 

  19. Keshamouni VG, Reddy RC, Arenberg DA, Joel B, Thannickal VJ, Kalemkerian GP, Standiford TJ (2004) Peroxisome proliferator-activated receptor-γ activation inhibits tumor progression in non-small-cell lung cancer. Oncogene 23:100–108

    Article  PubMed  CAS  Google Scholar 

  20. Lyon CM, Klinge DM, Do KC, Grimes MJ, Thomas CL, Damiani LA, March TH, Stidley CA, Belinsky SA (2009) Rosiglitazone prevents the progression of preinvasive lung cancer in a murine model. Carcinogenesis 30:2095–2099

    Article  PubMed  CAS  Google Scholar 

  21. Reddy RC, Srirangam A, Reddy K, Chen J, Gangireddy S, Kalemkerian GP, Standiford TJ, Keshamouni VG (2008) Chemotherapeutic drugs induce PPAR-γ expression and show sequence-specific synergy with PPAR-γ ligands in inhibition of non-small-cell lung cancer. Neoplasia 10:597–603

    PubMed  CAS  Google Scholar 

  22. Annicotte JS, Iankova I, Miard S, Fritz V, Sarruf D, Abella A, Berthe ML, Noël D, Pillon A, Iborra F, Dubus P, Maudelonde T, Culine S, Fajas L (2006) Peroxisome proliferator-activated receptor γ regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol Cell Biol 26:7561–7574

    Article  PubMed  CAS  Google Scholar 

  23. Yang SH, Lee KS, Yang HJ, Jeon BH, Lee YS, Nam SW, Chung DS, Lee SW, Hong YK (2011) O(6)-methylguanine-DNA-methyltransferase promoter methylation assessment by microdissection-assisted methylation-specific PCR and high resolution melting analysis in patients with glioblastomas. J Neurooncol 27. doi:10.1007/s11060-011-0668-4

  24. Bubb RS, Komaki R, Hachiya T, Milas I, Ro JY, Langford L, Sawaya R, Putnam JB, Allen P, Cox JD, McDonnell TJ, Brock W, Hong WK, Roth JA, Milas L (2002) Association of Ki-67, p53, and bcl-2 expression of the primary non-small-cell lung cancer lesion with brain metastatic lesion. Int J Radiat Oncol Biol Phys 53:1216–1224

    Article  PubMed  CAS  Google Scholar 

  25. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, Davis DW, McConkey DJ, Fidler IJ (2000) Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60:1453–1459

    Google Scholar 

  26. Hubbs JL, Boyd JA, Hollis D, Chino JP, Saynak M, Kelsey CR (2010) Factors associated with the development of brain metastases: analysis of 975 patients with early stage non-small-cell lung cancer. Cancer 116:5038–5046

    Article  PubMed  Google Scholar 

  27. Prudkin L, Liu D, Ozburn NC, Sun M, Behrens C, Tang X, Brown KC, Bekele BN, Moran C, Wistuba II (2009) Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol 22:668–678

    Article  PubMed  CAS  Google Scholar 

  28. Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis. Int J Oncol 34:881–895

    PubMed  CAS  Google Scholar 

  29. Shabani HK, Kitange G, Tsunoda K, Anda T, Tokunaga Y, Shibata S, Kaminogo M, Hayashi T, Ayabe H, Iseki M (2003) Immunohistochemical expression of E-cadherin in metastatic brain tumors. Brain Tumor Pathol 20:7–12

    Article  PubMed  CAS  Google Scholar 

  30. Saad AG, Yeap BY, Thunnissen FB, Pinkus GS, Pinkus JL, Loda M, Sugarbaker DJ, Johnson BE, Chirieac LR (2008) Immunohistochemical markers associated with brain metastasis in patients with non-small cell lung carcinoma. Cancer 113:2129–2138

    Article  PubMed  Google Scholar 

  31. Nernenoff RA (2007) Peroxisome proliferator-activated receptor-gamma in lung cancer: defining specific versus “off-target” effectors. J Thorac Oncol 2:989–992

    Article  Google Scholar 

  32. Reka AK, Kurapati H, Narala VR, Bommer G, Chen J, Standiford TJ, Keshamouni VG (2010) Peroxisome proliferator-activated receptor-gamma activation inhibits tumor metastasis by antagonizing Smad3-mediated epithelial-mesenchymal transition. Mol Cancer Ther 9:3221–3232

    Article  PubMed  CAS  Google Scholar 

  33. Han C, Demetris AJ, Liu Y, Shelhamer JH, Wu T (2004) Transforming growth factor-beta (TGF-beta) activates cytosolic phospholipase A2alpha (cPLA2alpha)-mediated prostaglandin E2 (PGE)2/EP1 and peroxisome proliferator-activated receptor-gamma (PPAR-gamma)/Smad signaling pathways in human liver cancer cells. A novel mechanism for subversion of TGF-beta-induced mitoinhibition. J Biol Chem 279:44344–44354

    Article  PubMed  CAS  Google Scholar 

  34. Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I (2005) Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 95:918–931

    Article  PubMed  CAS  Google Scholar 

  35. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–3654

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh AK, Bhattacharyya S, Wei J, Kim S, Barak Y, Mori Y, Varga J (2009) Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J 23:2968–2977

    Article  PubMed  CAS  Google Scholar 

  37. Libra M, Scalisi A, Vella N, Clementi S, Sorio R, Stivala F, Spandidos DA, Mazzarino C (2009) Uterine cervical carcinoma: role of matrix metalloproteinases (review). Int J Oncol 34:897–903

    PubMed  CAS  Google Scholar 

  38. Jia D, Yan M, Wang X, Hao X, Liang L, Liu L, Kong H, He X, Li J, Yao M (2010) Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer 10:364

    Article  PubMed  Google Scholar 

  39. Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, Sullivan PG (2011) Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol 227:128–135

    Article  PubMed  CAS  Google Scholar 

  40. Thal SC, Heinemann M, Luh C, Pieter D, Werner C, Engelhard K (2011) Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-γ-independent mechanisms. J Neurotrauma 28:983–993

    Article  PubMed  Google Scholar 

  41. Burstein HJ, Demetri GD, Mueller E, Sarraf P, Spiegelman BM, Winer EP (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79:391–397

    Article  PubMed  CAS  Google Scholar 

  42. Yee LD, Williams N, Wen P, Young DC, Lester J, Johnson MV, Farrar WB, Walker MJ, Povoski SP, Suster S, Eng C (2007) Pilot study of rosiglitazone therapy in women with breast cancer: effects of short-term therapy on tumor tissue and serum markers. Clin Cancer Res 13:246–252

    Article  PubMed  CAS  Google Scholar 

  43. Girnun GD, Chen L, Silvaggi J, Drapkin R, Chirieac LR, Padera RF, Upadhyay R, Vafai SB, Weissleder R, Mahmood U, Naseri E, Buckley S, Li D, Force J, McNamara K, Demetri G, Spiegelman BM, Wong KK (2008) Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin Cancer Res 14:6478–6486

    Article  PubMed  CAS  Google Scholar 

  44. Shimizu M, Moriwaki H (2008) Synergistic effects of PPARgamma ligands and retinoids in cancer treatment. PPAR Res 2008:181047

    Article  PubMed  Google Scholar 

  45. Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, Iwata KK, Gibson N, Haley JD (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65:9455–9462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (2009-0069346). We thank Se Hoon Kim for the analysis of in-vivo experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Ho Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5929 kb)

Supplementary material 2 (DOC 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, J.Y., Yang, SH., Lee, J.E. et al. E-cadherin as a predictive marker of brain metastasis in non-small-cell lung cancer, and its regulation by pioglitazone in a preclinical model. J Neurooncol 109, 219–227 (2012). https://doi.org/10.1007/s11060-012-0890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0890-8

Keywords

Navigation