Skip to main content

Advertisement

Log in

A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is a rapidly progressive disease of morbidity and mortality and is the most common form of primary brain cancer in adults. Lack of appropriate in vivo models has been a major roadblock to developing effective therapies for GBM. A new highly invasive in vivo GBM model is described that was derived from a spontaneous brain tumor (VM-M3) in the VM mouse strain. Highly invasive tumor cells could be identified histologically on the hemisphere contralateral to the hemisphere implanted with tumor cells or tissue. Tumor cells were highly expressive for the chemokine receptor CXCR4 and the proliferation marker Ki-67 and could be identified invading through the pia mater, the vascular system, the ventricular system, around neurons, and over white matter tracts including the corpus callosum. In addition, the brain tumor cells were labeled with the firefly luciferase gene, allowing for non-invasive detection and quantitation through bioluminescent imaging. The VM-M3 tumor has a short incubation time with mortality occurring in 100% of the animals within approximately 15 days. The VM-M3 brain tumor model therefore can be used in a pre-clinical setting for the rapid evaluation of novel anti-invasive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CT-2A:

Mouse astrocytoma

CXCR4:

Chemokine receptor

GBM:

Glioblastoma multiforme

IGFBP-2:

Insulin-like growth factor binding protein 2

Ki-67:

Proliferation marker

VM-M3:

Invasive mouse malignant glioma

VM-M3/Fluc:

VM-M3 tumor cells labeled with firefly luciferase

VM-NM1:

Mouse malignant glioma

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  2. Chang SM, Parney IF, Huang W, Anderson FA Jr, Asher AL, Bernstein M, Lillehei KO, Brem H, Berger MS, Laws ER (2005) Patterns of care for adults with newly diagnosed malignant glioma. JAMA 293:557–564

    Article  PubMed  CAS  Google Scholar 

  3. Laws ER Jr, Goldberg WJ, Bernstein JJ (1993) Migration of human malignant astrocytoma cells in the mammalian brain: Scherer revisited. Int J Dev Neurosci 11:691–697

    Article  PubMed  Google Scholar 

  4. Rubinstein LJ (1972) Tumors of the central nervous system. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  5. Scherer HJ (1940) The forms of growth in gliomas and their practical significance. Brain 63:1–34

    Article  Google Scholar 

  6. Duffner PK (2006) The long term effects of chemotherapy on the central nervous system. J Biol 5:21

    Article  PubMed  Google Scholar 

  7. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553

    Article  PubMed  CAS  Google Scholar 

  8. Huse JT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol (Zurich, Switzerland) 19:132–143

    CAS  Google Scholar 

  9. Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE, McNiel EA, Ohlfest JR, Freese AB, Moore PF, Lerner J, Lowenstein PR, Castro MG (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85:133–148

    Article  PubMed  Google Scholar 

  10. Xie Q, Thompson R, Hardy K, DeCamp L, Berghuis B, Sigler R, Knudsen B, Cottingham S, Zhao P, Dykema K, Cao B, Resau J, Hay R, Vande Woude GF (2008) A highly invasive human glioblastoma pre-clinical model for testing therapeutics. J Transl Med 6:77

    Article  PubMed  CAS  Google Scholar 

  11. Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12:5288–5297

    Article  PubMed  CAS  Google Scholar 

  12. Martinez-Murillo R, Martinez A (2007) Standardization of an orthotopic mouse brain tumor model following transplantation of CT-2A astrocytoma cells. Histol Histopathol 22:1309–1326

    PubMed  CAS  Google Scholar 

  13. Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V, Ceuppens J, Debyser Z, Van Gool SW (2008) In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 91(2):127-139

    Article  PubMed  Google Scholar 

  14. Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN (2002) Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer 86:1615–1621

    Article  PubMed  CAS  Google Scholar 

  15. Mukherjee P, Abate LE, Seyfried TN (2004) Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 10:5622–5629

    Article  PubMed  CAS  Google Scholar 

  16. Barth RF (1998) Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 36:91–102

    Article  PubMed  CAS  Google Scholar 

  17. Vince GH, Bendszus M, Schweitzer T, Goldbrunner RH, Hildebrandt S, Tilgner J, Klein R, Solymosi L, Christian Tonn J, Roosen K (2004) Spontaneous regression of experimental gliomas—an immunohistochemical and MRI study of the C6 glioma spheroid implantation model. Exp Neurol 190:478–485

    Article  PubMed  Google Scholar 

  18. Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK, Hickey WF (1994) A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 22:191–200

    Article  PubMed  CAS  Google Scholar 

  19. Zagzag D, Esencay M, Mendez O, Yee H, Smirnova I, Huang Y, Chiriboga L, Lukyanov E, Liu M, Newcomb EW (2008) Hypoxia- and vascular endothelial growth factor-induced stromal cell-derived factor-1alpha/CXCR4 expression in glioblastomas: one plausible explanation of Scherer’s structures. Am J Pathol 173:545–560

    Article  PubMed  CAS  Google Scholar 

  20. Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129

    Article  PubMed  CAS  Google Scholar 

  21. Hu X, Holland EC (2005) Applications of mouse glioma models in preclinical trials. Mutat Res 576:54–65

    PubMed  CAS  Google Scholar 

  22. Dai C, Holland EC (2001) Glioma models. Biochim Biophys Acta 1551:M19–M27

    PubMed  CAS  Google Scholar 

  23. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol 1:97–117

    Article  PubMed  CAS  Google Scholar 

  24. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science (New York, NY) 321:1807–1812

    CAS  Google Scholar 

  25. Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26:6781–6790

    Article  PubMed  CAS  Google Scholar 

  26. Heidner GL, Kornegay JN, Page RL, Dodge RK, Thrall DE (1991) Analysis of survival in a retrospective study of 86 dogs with brain tumors. J Vet Intern Med 5:219–226

    Article  PubMed  CAS  Google Scholar 

  27. LeCouteur RA (1999) Current concepts in the diagnosis and treatment of brain tumours in dogs and cats. J Small Anim Pract 40:411–416

    Article  PubMed  CAS  Google Scholar 

  28. Lipsitz D, Higgins RJ, Kortz GD, Dickinson PJ, Bollen AW, Naydan DK, LeCouteur RA (2003) Glioblastoma multiforme: clinical findings, magnetic resonance imaging, and pathology in five dogs. Vet Pathol 40:659–669

    Article  PubMed  CAS  Google Scholar 

  29. Foster ES, Carrillo JM, Patnaik AK (1988) Clinical signs of tumors affecting the rostral cerebrum in 43 dogs. J Vet Intern Med 2:71–74

    Article  PubMed  CAS  Google Scholar 

  30. Fraser H (1971) Astrocytomas in an inbred mouse strain. J Pathol 103:266–270

    Article  PubMed  CAS  Google Scholar 

  31. Fraser H (1986) Brain tumours in mice, with particular reference to astrocytoma. Food Chem Toxicol 24:105–111

    Article  PubMed  CAS  Google Scholar 

  32. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50:305–311

    Article  PubMed  CAS  Google Scholar 

  33. Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM, Seyfried TN (2008) Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int J Cancer 123:73–84

    Article  PubMed  CAS  Google Scholar 

  34. Rossi ML, Jones NR, Candy E, Nicoll JA, Compton JS, Hughes JT, Esiri MM, Moss TH, Cruz-Sanchez FF, Coakham HB (1989) The mononuclear cell infiltrate compared with survival in high-grade astrocytomas. Acta Neuropathol Berl 78:189–193

    Article  PubMed  CAS  Google Scholar 

  35. Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92:288–293

    Article  PubMed  CAS  Google Scholar 

  36. Stevenson CB, Ehtesham M, McMillan KM, Valadez JG, Edgeworth ML, Price RR, Abel TW, Mapara KY, Thompson RC (2008) CXCR4 expression is elevated in glioblastoma multiforme and correlates with an increase in intensity and extent of peritumoral T2-weighted magnetic resonance imaging signal abnormalities. Neurosurgery 63:560–569 (discussion 569–570, 2008)

    Article  PubMed  Google Scholar 

  37. Bian XW, Yang SX, Chen JH, Ping YF, Zhou XD, Wang QL, Jiang XF, Gong W, Xiao HL, Du LL, Chen ZQ, Zhao W, Shi JQ, Wang JM (2007) Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 61:570–578 (discussion 578–579, 2007)

    Article  PubMed  Google Scholar 

  38. Ehtesham M, Stevenson CB, Thompson RC (2008) Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery 63:E820 (author reply E820)

    Google Scholar 

  39. El-Abbadi M, Seyfried TN, Yates AJ, Orosz C, Lee MC (2001) Ganglioside composition and histology of a spontaneous metastatic brain tumour in the VM mouse. Br J Cancer 85:285–292

    Article  PubMed  CAS  Google Scholar 

  40. Huysentruyt LC, Shelton LM, Seyfried TN (2010) Influence of methotrexate and cisplatin on tumor progression and survival in the VM mouse model of systemic metastatic cancer. Int J Cancer 126(1):65–72

    Article  PubMed  CAS  Google Scholar 

  41. Ng WH, Yeo TT, Kaye AH (2005) Spinal and extracranial metastatic dissemination of malignant glioma. J Clin Neurosci 12:379–382

    Article  PubMed  Google Scholar 

  42. Hoffman HJ, Duffner PK (1985) Extraneural metastases of central nervous system tumors. Cancer 56:1778–1782

    Article  PubMed  CAS  Google Scholar 

  43. Kauffman HM, Cherikh WS, McBride MA, Cheng Y, Hanto DW (2007) Deceased donors with a past history of malignancy: an organ procurement and transplantation network/united network for organ sharing update. Transplantation 84:272–274

    Article  PubMed  Google Scholar 

  44. Lopes MBS, Vanbenberg SR, Scheithauer BW (1993) The world health organization classification of nervous system tumors in experimental neuro-oncology. In: Schmidek HH, Levine AJ (eds) Molecular genetics of nervous system tumors. Wiley, New York, pp 1–36

    Google Scholar 

  45. Liwnicz BH, Rubinstein LJ (1979) The pathways of extraneural spread in metastasizing gliomas: a report of three cases and critical review of the literature. Hum Pathol 10:453–467

    Article  PubMed  CAS  Google Scholar 

  46. Deroose CM, Reumers V, Gijsbers R, Bormans G, Debyser Z, Mortelmans L, Baekelandt V (2006) Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol Ther 14:423–431

    Article  PubMed  CAS  Google Scholar 

  47. Szentirmai O, Baker CH, Lin N, Szucs S, Takahashi M, Kiryu S, Kung AL, Mulligan RC, Carter BS (2006) Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 58:365–372 (discussion 365–372, 2006)

    Article  PubMed  Google Scholar 

  48. Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN (2001) N-butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer 84:1107–1114

    Article  PubMed  CAS  Google Scholar 

  49. Seyfried TN, el-Abbadi M, Roy ML (1992) Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 17:147–167

    Article  PubMed  CAS  Google Scholar 

  50. Shapiro WR, Ausman JI, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: evaluation of 1,3-bis(2-chloroethyl)-l-nitrosourea, cyclophosphamide, mithramycin, and methotrexate. Cancer Res 30:2401–2413

    PubMed  CAS  Google Scholar 

  51. Huysentruyt LC, Mukherjee P, Banerjee D, Shelton LM (2008) Metastatic cancer cells with macrophage properties: Evidence from a new murine tumor model. J Natl Cancer Inst 46(2):359–368

    Google Scholar 

  52. Abate LE, Mukherjee P, Seyfried TN (2006) Gene-linked shift in ganglioside distribution influences growth and vascularity in a mouse astrocytoma. J Neurochem 98:1973–1984

    Article  PubMed  CAS  Google Scholar 

  53. Scherer HJ (1938) Structural development in gliomas. Am J Cancer 34:333–351

    Google Scholar 

  54. Scherer HJ (1940) The pathology of cerebral gliomas. A critical review. J Neurol 34:147–177

    Google Scholar 

  55. Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME (2005) Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia (New York, NY) 7:7–16

    CAS  Google Scholar 

  56. Li SW, Qiu XG, Chen BS, Zhang W, Ren H, Wang ZC, Jiang T (2009) Prognostic factors influencing clinical outcomes of glioblastoma multiforme. Chin Med J 122:1245–1249

    PubMed  Google Scholar 

  57. Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, Taylor J, Hanash SM (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891

    PubMed  CAS  Google Scholar 

  58. Fuller GN, Rhee CH, Hess KR, Caskey LS, Wang R, Bruner JM, Yung WK, Zhang W (1999) Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59:4228–4232

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from NIH Grants [NS-055195; CA-102135] and from the Boston College Research expense fund. The authors would like to thank Roderick Bronson for technical advice and evaluation of tumor histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Seyfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelton, L.M., Mukherjee, P., Huysentruyt, L.C. et al. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion. J Neurooncol 99, 165–176 (2010). https://doi.org/10.1007/s11060-010-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0115-y

Keywords

Navigation