Skip to main content

Advertisement

Log in

Engineered herpes simplex viruses efficiently infect and kill CD133+ human glioma xenograft cells that express CD111

  • Laboratory Investigation - Human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Oncolytic herpes simplex viruses (HSV) hold promise for therapy of glioblastoma multiforme (GBM) resistant to traditional therapies. We examined the ability of genetically engineered HSV to infect and kill cells that express CD133, a putative marker of glioma progenitor cells (GPC), to determine if GPC have an inherent therapeutic resistance to HSV. Expression of CD133 and CD111 (nectin-1), the major entry molecule for HSV, was variable in six human glioma xenografts, at initial disaggregation and after tissue culture. Importantly, both CD133+ and CD133− populations of glioma cells expressed CD111 in similar relative proportions in five xenografts, and CD133+ and CD133− glioma cell subpopulations were equally sensitive to killing in vitro by graded dilutions of wild-type HSV-1(F) or several different γ134.5-deleted viruses. GPC did not display an inherent resistance to HSV. While CD111 expression was an important factor for determining sensitivity of glioma cells to HSV oncolysis, it was not the only factor. Our findings support the notion that HSV will not be able to effectively enter, infect, and kill cells in tumors that have low CD111 expression (<20%). However, virotherapy with HSV may be very effective against CD111+ GPC resistant to traditional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Ben MJ, Weller M (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  3. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100(25):15178–15183. doi:10.1073/pnas.2036535100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021. doi:10.1158/0008-5472.CAN-04-1364

    Article  CAS  PubMed  Google Scholar 

  5. Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015. doi:10.1158/0008-5472.CAN-06-4180

    Article  CAS  PubMed  Google Scholar 

  6. Joo KM, Kim SY, Jin X et al (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88(8):808–815. doi:10.1038/labinvest.2008.57

    Article  CAS  PubMed  Google Scholar 

  7. Dell’Albani P (2008) Stem cell markers in gliomas. Neurochem Res 33(12):2407–2415

    Article  PubMed  Google Scholar 

  8. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67–69. doi:10.1186/1476-4598-5-67

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bi CL, Fang JS, Chen FH, Wang YJ, Wu J (2007) Chemoresistance of CD133(+) tumor stem cells from human brain glioma. Zhong Nan Da Xue Xue Bao Yi Xue Ban 32(4):56873

    Google Scholar 

  10. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  11. Thon N, Damianoff K, Hegermann J, Grau S, Krebs B, Schnell O, Tonn JC, Goldbrunner R (2008) Presence of pluripotent CD133(+) cells correlates with malignancy of gliomas. Mol Cell Neurosci [Epub ahead of print]

  12. Markert JM, Parker JN, Gillespie GY, Whitley RJ (2001) Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes 8(1):17–22

    CAS  PubMed  Google Scholar 

  13. Chou J, Kern ER, Whitley RJ, Roizman B (1990) Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250(4985):1262–1266. doi:10.1126/science.2173860

    Article  CAS  PubMed  Google Scholar 

  14. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL (1995) Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1(9):938–943. doi:10.1038/nm0995-938

    Article  CAS  PubMed  Google Scholar 

  15. Markert JM, Medlock MD, Rabkin SD et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7(10):867–874. doi:10.1038/sj.gt.3301205

    Article  CAS  PubMed  Google Scholar 

  16. Rampling R, Cruickshank G, Papanastassiou V et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant) in patients with recurrent malignant glioma. Gene Ther 7(10):859–866. doi:10.1038/sj.gt.3301184

    Article  CAS  PubMed  Google Scholar 

  17. Papanastassiou V, Rampling R, Fraser M et al (2002) The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 9(6):398–406. doi:10.1038/sj.gt.3301664

    Article  CAS  PubMed  Google Scholar 

  18. Harrow S, Papanastassiou V, Harland J et al (2004) HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 11(22):1648–1658. doi:10.1038/sj.gt.3302289

    Article  CAS  PubMed  Google Scholar 

  19. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG (1998) Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280(5369):1618–1620. doi:10.1126/science.280.5369.1618

    Article  CAS  PubMed  Google Scholar 

  20. Krummenacher C, Nicola AV, Whitbeck JC et al (1998) Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 72(9):7064–7074

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang YY, Yu Z, Lin SF, Li S, Fong Y, Wong RJ (2007) Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy. J Clin Endocrinol Metab 92(5):1965–1970. doi:10.1210/jc.2007-0040

    Article  CAS  PubMed  Google Scholar 

  22. Yu Z, Adusumilli PS, Eisenberg DP et al (2007) Nectin-1 expression by squamous cell carcinoma is a predictor of herpes oncolytic sensitivity. Mol Ther 15(1):103–113. doi:10.1038/sj.mt.6300009

    Article  CAS  PubMed  Google Scholar 

  23. Yu Z, Chan MK, O-charoenrat P et al (2005) Enhanced nectin-1 expression and herpes oncolytic sensitivity in highly migratory and invasive carcinoma. Clin Cancer Res 11(13):4889–4897. doi:10.1158/1078-0432.CCR-05-0309

    Article  CAS  PubMed  Google Scholar 

  24. Rueger MA, Winkeler A, Miletic H et al (2005) Variability in infectivity of primary cell cultures of human brain tumors with HSV-1 amplicon vectors. Gene Ther 12(7):588–596. doi:10.1038/sj.gt.3302462

    Article  CAS  PubMed  Google Scholar 

  25. Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR (2004) STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci USA 101:1714–1719. doi:10.1073/pnas.0308102100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM (2000) Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 97(5):2208–2213. doi:10.1073/pnas.040557897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andreansky S, Soroceanu L, Flotte ER et al (1997) Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res 57(8):1502–1509

    CAS  PubMed  Google Scholar 

  28. Ejercito PM, Kieff ED, Roizman B (1968) Characterization of herpes simplex virus strains differing in their side effects on social behavior of infected cells. J Gen Virol 2(3):357–364. doi:10.1099/0022-1317-2-3-357

    Article  CAS  PubMed  Google Scholar 

  29. Cassady KA (2005) Human cytomegalovirus TRS1 and IRS1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection. J Virol 79(14):8707–8715. doi:10.1128/JVI.79.14.8707-8715.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu A, Wiesner S, Xiao J et al (2007) Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 83(2):121–131. doi:10.1007/s11060-006-9265-3

    Article  CAS  PubMed  Google Scholar 

  31. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. doi:10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  32. Salmaggi A, Boiardi A, Gelati M et al (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54(8):850–860. doi:10.1002/glia.20414

    Article  PubMed  Google Scholar 

  33. Griguer CE, Oliva CR, Gobin E, et al. (2008) CD133 is a marker of bioenergetic stress in human glioma. PLoS One 3(11):e3655. PMID: 18985161. doi:10.1371/journal.pone.0003655

  34. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H (2008) Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26:1818–1830. doi:10.1634/stemcells.2007-0724

    Article  PubMed  Google Scholar 

  35. Dings J, Meixensberger J, Jager A, Roosen K (1998) Clinical experience with 118 brain tissue oxygen partial pressure probes. Neurosurgery 43:1082–1095. doi:10.1097/00006123-199811000-00045

    Article  CAS  PubMed  Google Scholar 

  36. Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang W-T, Nelson PT, Lustig RA, Jenkins K, Magarelli DP, Hahn SM, Collins RA, Grady MS, Koch CJ (2004) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184. doi:10.1158/1078-0432.CCR-04-1081

    Article  CAS  PubMed  Google Scholar 

  37. Camphausen K, Purow B, Sproull M, Scott T, Ozawa T, Deen DF, Tofilon PJ (2005) Influence of in vivo growth on human glioma cell line gene expression: convergent profiles under orthotopic conditions. Proc Natl Acad Sci USA 102(23):8287–8292. doi:10.1073/pnas.0502887102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87(3):427–436. doi:10.1016/S0092-8674(00)81363-X

    Article  CAS  PubMed  Google Scholar 

  39. Shukla D, Liu J, Blaiklock P et al (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99(1):13–22. doi:10.1016/S0092-8674(00)80058-6

    Article  CAS  PubMed  Google Scholar 

  40. Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6(5):401–410. doi:10.1111/j.1462-5822.2004.00389.x

    Article  CAS  PubMed  Google Scholar 

  41. Krummenacher C, Baribaud F, Ponce de Leon M et al (2004) Comparative usage of herpesvirus entry mediator A and nectin-1 by laboratory strains and clinical isolates of herpes simplex virus. Virology 322(2):286–299. doi:10.1016/j.virol.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  42. Kwon BS, Tan KB, Ni J et al (1997) A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 272(22):14272–14276. doi:10.1074/jbc.272.22.14272

    Article  CAS  PubMed  Google Scholar 

  43. Guzman G, Oh S, Shukla D, Engelhard HH, Valyi-Nagy T (2006) Expression of entry receptor nectin-1 of herpes simplex virus 1 and/or herpes simplex virus 2 in normal and neoplastic human nervous system tissues. Acta Virol 50(1):59–66

    CAS  PubMed  Google Scholar 

  44. Lopez M, Cocchi F, Menotti L, Avitabile E, Dubreuil P, Campadelli-Fiume G (2000) Nectin2alpha (PRR2alpha or HveB) and nectin2delta are low-efficiency mediators for entry of herpes simplex virus mutants carrying the Leu25Pro substitution in glycoprotein D. J Virol 74(3):1267–1274. doi:10.1128/JVI.74.3.1267-1274.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Warner MS, Geraghty RJ, Martinez WM et al (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 246(1):179–189. doi:10.1006/viro.1998.9218

    Article  CAS  PubMed  Google Scholar 

  46. Simpson SA, Manchak MD, Hager EJ et al (2005) Nectin-1/HveC Mediates herpes simplex virus type 1 entry into primary human sensory neurons and fibroblasts. J Neurovirol 11(2):208–218. doi:10.1080/13550280590924214

    Article  CAS  PubMed  Google Scholar 

  47. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS, Raben D, Curiel DT (1998) Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 58(24):5738–5748

    CAS  PubMed  Google Scholar 

  48. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414. doi:10.1093/jnci/djm102

    Article  CAS  PubMed  Google Scholar 

  49. Skog J, Edlund K, Bergenheim AT, Wadell G (2007) Adenoviruses 16 and CV23 efficiently transduce human low-passage brain tumor and cancer stem cells. Mol Ther 15(12):2140–2145. doi:10.1038/sj.mt.6300315

    Article  CAS  PubMed  Google Scholar 

  50. Paraskevakou G, Allen C, Nakamura T, Zollman P, James CD, Peng KW, Schroeder M, Russell SJ, Galanis E (2007) Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther 15(4):677–686

    Article  CAS  PubMed  Google Scholar 

  51. Allen C, Paraskevakou G, Iankov I, Giannini C, Schroeder M, Sarkaria J, Schroeder M, Puri RK, Russell SJ, Galanis E (2008) Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity. Mol Ther 16(9):1556–1564. doi:10.1038/mt.2008.152

    Article  CAS  PubMed Central  Google Scholar 

  52. Zhou G, Ye G-J, Debinski W, Roizman B (2002) Genetic engineering of a herpes simplex virus 1 vector dependent on the IL13Rα2 receptor for entry into cells: interaction of glycoprotein D with its receptors is independent of the fusion of the envelope and the plasma membrane. Proc Natl Acad Sci USA 99:15124–15129. doi:10.1073/pnas.232588699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou G, Roizman B (2005) Characterization of a recombinant herpes simplex virus 1 targeted to enter cells via the IL13Rα2 receptor of malignant glioma cells. J Virol 79:5272–5277. doi:10.1128/JVI.79.9.5272-5277.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kamiyama H, Zhou G, Roizman B (2006) Herpes simplex virus 1 recombinant virions exhibiting the amino terminal fragment of urokinase-type plasminogen activator can enter cells via the cognate receptor. Gene Ther 13:621–629. doi:10.1038/sj.gt.3302685

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. C.D. James, J. Sarkaria and D.D. Bigner for the gifts of human glioma xenograft lines used in this study. We thank Dr. B. Roizman for the gift of some of the HSV strains used in this work. We thank Enid Keyser for her expertise on FACS analyses, which were performed at the UAB Flow Cytometry shared facility. This research was supported in part by the Dixon Fellowship (GKF), and NIH grants CA097247 (GYG, KAC, JNP, JMM) and CA071933 (JMM, JNP, GYG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory K. Friedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, G.K., Langford, C.P., Coleman, J.M. et al. Engineered herpes simplex viruses efficiently infect and kill CD133+ human glioma xenograft cells that express CD111. J Neurooncol 95, 199–209 (2009). https://doi.org/10.1007/s11060-009-9926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9926-0

Keywords

Navigation