Skip to main content

Advertisement

Log in

TGF-β2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors

  • Laboratory investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

TGF-β2 secretion by high grade gliomas has been implicated as one of the major factors contributing to tumor growth, alterations in the host immune response to tumor, and failure of gliomas to respond to current immunotherapy strategies. We hypothesized that targeted delivery and inhibition of TGF-β2 by TGF-β2 antisense oligonucleotides (AS-ODNs) would overcome tumor-induced immunosuppression and enhance the capacity of tumor vaccines to eradicate established brain tumors. Utilizing the mRNA sequences of TGF-β2, specific AS-ODNs were constructed and tested for their ability to inhibit TGF-β2 production in 9L glioma cells. The effect of combining local intracranial administration of antisense ODNs with systemic tumor vaccine was examined. Fisher 344 rats were vaccinated subcutaneously with irradiated 9L tumor cells 3 days after intracranial tumor implantation. Four days after vaccination, ODNs were administered into the tumor mass and survival was followed. ODNs delivered locally distributed widely within the brain tumor mass and inhibited TGF-β2 expression. Survival of tumor-bearing rats treated with the combination of local antisense and systemic tumor vaccine was significantly enhanced (mean survival time (MST): 48.0 days). In contrast, MST for animals treated with nonsense plus vaccine, vaccine alone, antisense alone or PBS showed no survival advantage and no statistical differences between groups (33.5 days, 29.0 days, 37.5 days, and 31.5 days, respectively). Our data supports the hypothesis that local administration of antisense TGF-β2 ODNs combined with systemic vaccination can increase efficacy of immunotherapy and is a novel, potentially clinically applicable, strategy for high-grade glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheinberg LC, Suzuki K, Edelman F, Davidoff LM (1963) Studies in immunization against a transplantable cerebral mouse glioma. J Neurosurg 20:312–316

    PubMed  CAS  Google Scholar 

  2. Kida Y, Cravioto H, Hochwald GM, Hochgeschwender U, Ransohoff J (1983) Immunity to transplantable nitrosourea-induced neurogenic tumors. II. Immunoprophylaxis of tumors of the brain. J Neuropathol Exp Neurol 42:122–135

    PubMed  CAS  Google Scholar 

  3. Yumitori K, Ito Y, Handa H (1982) Protective effect of immunization with virus-infected glioma cells against intracerebrally implanted glioma in mice. Eur J Cancer Clin Oncol 18:177–181

    Article  PubMed  CAS  Google Scholar 

  4. Siesjo P, Visse E, Lindvall M, Salford L, Sjogren HO (1993) Immunization with mutagen-treated (tum-) cells causes rejection of nonimmunogenic rat glioma isografts. Cancer Immunol Immunother 37:67–74

    Article  PubMed  CAS  Google Scholar 

  5. Glick RP, Lichtor T, Kim TS, Ilangovan S, Cohen E (1995) Fibroblasts genetically engineered to secrete cytokines suppress tumor growth and induce antitumor immunity to a murine glioma in vivo. Neurosurgery 36:548–555

    Article  PubMed  CAS  Google Scholar 

  6. Broder H, Anderson A, Odesa SK, Kremen TJ, Liau LM (2001) Recombinant adenovirus-transduced dendritic cell immunization in a murine model of central nervous system tumor. Neurosurgical Focus 9:1–8

    Article  Google Scholar 

  7. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee␣PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    PubMed  CAS  Google Scholar 

  8. Siesjo P, Visse E, Sjogren HO (1996) Cure of established, intracerebral rat gliomas induced by therapeutic immunizations with tumor cells and purified APC or adjuvant IFN-gamma treatment. J Immunother Emphasis Tumor Immunol 19:334–345

    PubMed  CAS  Google Scholar 

  9. Bloom WH, Carstairs KC, Crompton MR, McKissock W (1960) Autologous glioma transplantation. Lancet 2:77–78

    Article  PubMed  CAS  Google Scholar 

  10. Trouillas P, Lapras C (1970) [Active immunotherapy of cerebral tumor. 20 cases]. Neurochirurgie 16:143–170

    PubMed  CAS  Google Scholar 

  11. Mahaley MSJ, Bigner DD, Dudka LF, Wilds PR, Williams DH, Bouldin TW, Whitaker JN, Bynum JM (1983) Immunobiology of primary intracranial tumors. Part 7: Active immunization of patients with anaplastic human glioma cells: a pilot study. J Neurosurg 59:201–207

    PubMed  Google Scholar 

  12. Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12:370–374

    Article  PubMed  CAS  Google Scholar 

  13. Brooks WH, Netsky MG, Normansell DE, Horwitz DA (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. J Exp Med 136:1631–1647

    Article  PubMed  CAS  Google Scholar 

  14. Mahaley MSJ, Brooks WH, Roszman TL, Bigner DD, Dudka L, Richardson S (1977) Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients. J Neurosurg 46:467–476

    PubMed  Google Scholar 

  15. Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222–3229

    PubMed  CAS  Google Scholar 

  16. Brooks WH, Latta RB, Mahaley MS, Roszman TL, Dudka L, Skaggs C (1981) Immunobiology of primary intracranial tumors. Part 5: correlation of a lymphocyte index and clinical status. J Neurosurg 54:331–337

    Article  PubMed  CAS  Google Scholar 

  17. Kuppner MC, Sawamura Y, Hamou MF, de Tribolet N (1990) Influence of PGE2- and cAMP-modulating agents on human glioblastoma cell killing by interleukin-2-activated lymphocytes. J Neurosurg 72:619–625

    PubMed  CAS  Google Scholar 

  18. Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, Sato K, Okumura K (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37:1160–1166

    PubMed  CAS  Google Scholar 

  19. Kuppner MC, Hamou MF, Sawamura Y, Bodmer S, de Tribolet N (1989) Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J␣Neurosurg 71:211–217

    PubMed  CAS  Google Scholar 

  20. Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN (1992) Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance. J Neurosurg 76:799–804

    PubMed  CAS  Google Scholar 

  21. Huber D, Philipp J, Fontana A (1992) Protease inhibitors interfere with the transforming growth factor-beta-dependent but not the transforming growth factor-beta-independent pathway of tumor cell-mediated immunosuppression. J␣Immunol 148:277–284

    PubMed  CAS  Google Scholar 

  22. Kehrl JH, Roberts AB, Wakefield LM, Jakowlew S, Sporn MB, Fauci AS (1986) Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol 137:3855–3860

    PubMed  CAS  Google Scholar 

  23. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS (1986) Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037–1050

    Article  PubMed  CAS  Google Scholar 

  24. Ranges GE, Figari IS, Espevik T, Palladino MAJ (1987) Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med 166:991–998

    Article  PubMed  CAS  Google Scholar 

  25. Rook AH, Kehrl JH, Wakefield LM, Roberts AB, Sporn␣MB, Burlington DB, Lane HC, Fauci AS (1986) Effects of transforming growth factor beta on the functions␣of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol 136:3916–3920

    PubMed  CAS  Google Scholar 

  26. Kuppner MC, Hamou MF, Bodmer S, Fontana A, de Tribolet N (1988) The glioblastoma-derived T-cell suppressor factor/transforming growth factor beta 2 inhibits the generation of␣lymphokine-activated killer (LAK) cells. Int J Cancer 42:562–567

    PubMed  CAS  Google Scholar 

  27. Miescher S, Whiteside TL, de Tribolet N, von FV (1988) In situ characterization, clonogenic potential, and antitumor cytolytic activity of T lymphocytes infiltrating human brain cancers. J Neurosurg 68:438–448

    PubMed  CAS  Google Scholar 

  28. Miescher S, Whiteside TL, Carrel S, von FV (1986) Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J␣Immunol 136:1899–1907

    PubMed  CAS  Google Scholar 

  29. Zuber P, Kuppner MC, de Tribolet N (1988) Transforming growth factor-beta 2 down-regulates HLA-DR antigen expression on human malignant glioma cells. Eur J Immunol 18:1623–1626

    PubMed  CAS  Google Scholar 

  30. Resnicoff M, Sell C, Rubini M, Coppola D, Ambrose D, Baserga R, Rubin R (1994) Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res 54:2218–2222

    PubMed  CAS  Google Scholar 

  31. Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:189–195

    Article  PubMed  CAS  Google Scholar 

  32. Satoh E, Naganuma H, Sasaki A, Nagasaka M, Ogata H, Nukui H (1997) Effect of irradiation on transforming growth factor beta secretion by malignant glioma cells. J Neurooncol 33:195–200

    Article  PubMed  CAS  Google Scholar 

  33. Fakhrai H, Dorigo O, Shawler DL, Lin H, Mercola D, Black␣KL, Royston I, Sobol RE (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 93:2909–2914

    Article  PubMed  CAS  Google Scholar 

  34. Bogdahn U, Hau P, Brawanski A, Schlaier J, Mehdorn M, Wurm G, Pickler J, Kunst M, Stauder G, Schlingensiepen K-H (2004) J Clin Oncol 22(14S):1514

    Google Scholar 

  35. Wagner RW (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335

    Article  PubMed  CAS  Google Scholar 

  36. Sharma HW, Narayanan R (1995) The therapeutic potential of antisense oligonucleotides. Bioessays 17:1055–1063

    Article  PubMed  CAS  Google Scholar 

  37. Hall WA, Flores EP, Low WC (1996) Antisense oligonucleotides for central nervous system tumors. Neurosurgery 38:376–383

    Article  PubMed  CAS  Google Scholar 

  38. Engelhard HH, Egli M, Rozental JM (1998) Use of antisense vectors and oligodeoxynucleotides in neuro-oncology. Pediatr Neurosurg 28:279–285

    Article  PubMed  CAS  Google Scholar 

  39. Carpentier AF, Xie J, Mokhtari K, Delattre JY (2000) Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 6:2469–2473

    PubMed  CAS  Google Scholar 

  40. Engelhard H, Narang C, Homer R, Duncan H (1996) Urokinase antisense oligodeoxynucleotides as a novel therapeutic agent for malignant glioma: in vitro and in vivo studies of uptake, effects and toxicity. Biochem Biophys Res Commun 227:400–405

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Ng K, Lillehei KO (2000) Time course analysis and modulating effects of established brain tumor on active-specific immunotherapy. Neurosurg Focus 9:1–9

    Article  Google Scholar 

  42. Olofsson A, Miyazono K, Kanzaki T, Colosetti P, Engstrom U, Heldin CH (1992) Transforming growth factor-beta 1, -beta 2, and -beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. J Biol Chem 267:19482–19488

    PubMed  CAS  Google Scholar 

  43. Koishi K, Dalzell KG, McLennan IS (2000) The expression and structure of TGF-beta2 transcripts in rat muscles. Biochim Biophys Acta 1492(2–3):311–319

    PubMed  CAS  Google Scholar 

  44. Agrawal S, Temsamani J, Tang JY (1991) Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA 88:7595–7599

    Article  PubMed  CAS  Google Scholar 

  45. Lillehei KO, Liu Y, Kong Q (1999) Current perspectives in immunotherapy. Ann Thorac Surg 68:S28–S33

    Article  PubMed  CAS  Google Scholar 

  46. Lillehei KO, Kong Q, Withrow SJ, Kleinschmidt-DeMasters BK (1996) Efficacy of intralesionally administered cisplatin-impregnated biodegradable polymer for the treatment of 9L gliosarcoma in the rat. Neurosurgery 39(6):1191–1197

    Article  PubMed  CAS  Google Scholar 

  47. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 457–481

  48. Matthews DE, Farewell V (1985) The Log-Rank or Mantel-Haenszel test for the comparison of survival curves. In: Anonymous using and understanding medical statistics, Basel, Karger, pp 79–87

  49. Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Apfel R, Dorries R, Schlingensiepen KH, Brysch W (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J␣Neurosurg 78:944–951

    PubMed  CAS  Google Scholar 

  50. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    Article  PubMed  CAS  Google Scholar 

  51. Ruffini PA, Rivoltini L, Silvani A, Boiardi A, Parmiani G (1993) Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunol Immunother 36(6):409–416

    Article  PubMed  CAS  Google Scholar 

  52. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2(6):668–675

    Article  PubMed  CAS  Google Scholar 

  53. Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44:613–625

    Article  PubMed  CAS  Google Scholar 

  54. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  PubMed  CAS  Google Scholar 

  55. Jachimczak P, Hessdorfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U (1996) Transforming growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65:332–337

    Article  PubMed  CAS  Google Scholar 

  56. Grzanna R, Dubin JR, Dent GW, Ji Z, Zhang W, Ho SP, Hartig PR (1998) Intrastriatal and intraventricular injections of oligodeoxynucleotides in the rat brain: tissue penetration, intracellular distribution and c-fos antisense effects. Brain Res Mol Brain Res 63:35–52

    Article  PubMed  CAS  Google Scholar 

  57. Szklarczyk A, Kaczmarek L (1995) Antisense oligodeoxyribonucleotides: stability and distribution after intracerebral injection into rat brain. J Neurosci Methods 60:181–187

    Article  PubMed  CAS  Google Scholar 

  58. Broaddus WC, Prabhu SS, Gillies GT, Neal J, Conrad WS, Chen ZJ, Fillmore H, Young HF (1998) Distribution and stability of antisense phosphorothioate oligonucleotides in rodent brain following direct intraparenchymal controlled-rate infusion. J Neurosurg 88:734–742

    Article  PubMed  CAS  Google Scholar 

  59. Whitesell L, Geselowitz D, Chavany C, Fahmy B, Walbridge S, Alger JR, Neckers LM (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci USA 90:4665–4669

    Article  PubMed  CAS  Google Scholar 

  60. Patel AR, Li J, Bass BL, Wang JY (1998) Expression of the transforming growth factor-beta gene during growth inhibition following polyamine depletion. Am J Physiol 275:C590–C598

    PubMed  CAS  Google Scholar 

  61. Stein CA, Cheng YC (1993) Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science 261:1004–1012

    Article  PubMed  CAS  Google Scholar 

  62. Dutta T, Spence A, Lampson LA (2003) Robust ability of IFN-gamma to upregualte class II MHC antigen expression in tumor bearing rat brains. J Neuro-Oncol 64(1–2):31–44

    Article  Google Scholar 

  63. Lampson LA, Wen P, Roman VA, Morris JH, Sarid JA (1992) Disseminating tumor cells and their interactions with leukocytes visualized in the brain. Cancer Res 52(4):1018–1025

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin O. Lillehei.

Additional information

Supported in part by the University of Colorado Cancer Center, a generous grant from the Partridge family, the Milheim Foundation for Brain Tumor Research, the ABC2 Foundation, the Michele Plachy-Rubin Foundation for Brain Tumor Research, and a generous grant from the Pharmaceutical Research and Manufacturers of America Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wang, Q., Kleinschmidt-DeMasters, B.K. et al. TGF-β2 inhibition augments the effect of tumor vaccine and improves the survival of animals with pre-established brain tumors. J Neurooncol 81, 149–162 (2007). https://doi.org/10.1007/s11060-006-9222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9222-1

Keywords

Navigation