Skip to main content
Log in

Agrobacterium-mediated transformation of European chestnut somatic embryos with a Castanea sativa (Mill.) endochitinase gene

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Chestnut blight, caused by Cryphonectria parasitica, is a severe disease that has devastated chestnut stands in North America and Europe. Genes encoding hydrolytic enzymes such as chitinases, which can degrade fungal cell wall components, are attractive candidates for improving disease resistance. This report describes a reliable and efficient protocol for the Agrobacterium-mediated transformation of somatic embryos of European chestnut with the endogenous CsCh3 gene that codes for chitinase. The transformation efficiency, determined on the basis of the fluorescence of surviving explants, was genotype-dependent. Although somatic embryos of all three lines evaluated were transformed, the best results were obtained with somatic embryos derived from line CI-9 (20 %). The addition of silver thiosulphate (20 or 40 μM) improved the transformation efficiency of somatic embryos derived from lines CI-3 and CI-9, although the differences were not significant. A total of 88 independent transformed lines were obtained. The presence of transgenes was confirmed by green fluorescent protein (GFP) expression, PCR and Southern blot analysis. Transgenic lines were maintained by secondary embryogenesis or cryopreservation following vitrification procedures. Maturation and germination of transformed somatic embryos yielded transgenic plants. Fluorescence indicating overexpression of the transgenes was observed in somatic embryos and also in shoots and leaves. No phenotypic differences were found relative to control plants, suggesting a lack of any cytotoxic effects of the GFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allona I, Collada C, Casado R, Paz-Ares J, Aragoncillo C (1996) Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. Plant Mol Biol 32:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Álvarez R, Ordás RJ (2007) Improved genetic transformation protocol for cork oak (Quercus suber L.). Plant Cell, Tissue Organ Cult 91:45–52

    Article  Google Scholar 

  • Anagnostakis SL (1995) The pathogens and pests of chestnuts. In: Andrews JH, Tommerup I (eds) Advances in botanical research (Vol 21). Academic Press, New York, pp 125–145

    Google Scholar 

  • Anagnostakis SL (2001) The effect of multiple importations of pests and pathogens on a native tree. Biol Invasions 3:245–254

    Article  Google Scholar 

  • Andrade GM, Nairn CJ, Le HT, Merkle SA (2009) Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation. Plant Cell Rep 28:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff R, Carlson JE (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezirganoglu I, Hwang S-Y, Fang TJ, Shaw J-F (2013) Transgenic lines of melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell, Tissue Organ Cult 112:227–237

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifugal genes. Biotechnol Lett 34:995–1002

    Article  PubMed  Google Scholar 

  • Collada C, Casado R, Fraile A, Aragoncillo C (1992) Basic endochitinases are major proteins in Castanea sativa cotyledons. Plant Physiol 100:778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC, Lorito M, Giordana B, Pennacchio F, Rao R (2008) The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res 17:557–571

    Article  CAS  PubMed  Google Scholar 

  • Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann Bot 92:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredoira E, Montenegro D, San José MC, Vieitez AM, Ballester A (2004) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318

    Article  CAS  PubMed  Google Scholar 

  • Corredoira E, Ballester A, Vieitez FJ, Vieitez AM (2006) Somatic embryogenesis in chestnut. In: Mujib A, Samaj J (eds) Plant cell monographs, Vol. 2, somatic embryogenesis. Springer, Berlin, pp 177–199

    Google Scholar 

  • Corredoira E, San José MC, Vieitez AM, Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell, Tissue Organ Cult 91:281–288

    Article  CAS  Google Scholar 

  • Corredoira E, Valladares S, Vieitez AM, Ballester A (2008) Improved germination of somatic embryos and plant recovery of European chestnut. In Vitro Cell Dev Biol Plant 44:307–315

    Article  CAS  Google Scholar 

  • Corredoira E, Valladares S, Allona I, Aragoncillo C, Vieitez AM, Ballester A (2012) Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol 32:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Corredoira E, Valladares S, Vieitez AM, Ballester A (2015) Chestnut, European (Castanea sativa). In: Wang K (ed) Methods in molecular biology Agrobacterium protocols. Springer, New York, pp 163–176

    Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol Plant 44:149–161

    Article  CAS  Google Scholar 

  • De la Riva G, Gónzalez-Cabrera J, Vázquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1:1–15

    Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol-Plant 47:458–466

    Article  CAS  Google Scholar 

  • Dutt M, Vasconcellos M, Grosser JW (2011) Effects of antioxidants on Agrobacterium-mediated transformation and accelerated production of transgenic plants of Mexican lime (Citrus aurantifolia Swingle). Plant Cell, Tissue Organ Cult 107:79–89

    Article  CAS  Google Scholar 

  • Emani C, García JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim D-J, Sunilkumar G, Cook DR, Kenerly CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–326

    Article  CAS  PubMed  Google Scholar 

  • García-Casado G, Collada C, Allona I, Soto A, Casado R, Rodríguez-Cerezo E, Gómez L, Aragoncillo C (2000) Characterization of an apoplastic basic thaumatin-like protein from recalcitrant chestnut seeds. Physiol Plant 110:172–180

    Article  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell, Tissue Organ Cult 105:243–251

    Article  CAS  Google Scholar 

  • Han JS, Kim CK, Park SH, Hirschi KD, Mok IG (2005) Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl). Plant Cell Rep 23:692–698

    Article  CAS  PubMed  Google Scholar 

  • Han KM, Dharmawardhana P, Arias RS, Ma C, Busov V, Strauss SH (2011) Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnol J 9:162–178

    Article  CAS  PubMed  Google Scholar 

  • Hebard FV (2006) The backcross breeding program of the American Chestnut Foundation. In: Steiner KC, Carlson JE (eds) Restoration of American chestnut to forest lands. Proceedings of a conference and workshop, May 4–6, 2004, The North Carolina Arboretum, Asheville. Natural Resources Report NPS/NCR/CUE/NRR – 2006/01. Washington, DC: National Park Service, pp 61–77

  • Heiniger U, Rigling D (1994) Biological control of chestnut blight in Europe. Ann Rev Phytopathol 32:581–599

    Article  Google Scholar 

  • Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10:237–247

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hou H, Atlihan N, Lu Z-X (2014) New biotechnology enhances the application of cisgenesis in plant breeding. Front Plant Sci 5:389

    PubMed  PubMed Central  Google Scholar 

  • Jacobs DF (2007) Toward development of silvical strategies for forest restoration of American chestnut (Castanea dentata) using blight-resistant hybrids. Biol Conserv 137:497–506

    Article  Google Scholar 

  • Jacobs DF, Dalgleish HJ, Nelson CD (2013) A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. New Phytol 197:378–393

    Article  PubMed  Google Scholar 

  • Jacobsen E, Schouten HJ (2008) Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation of genetically modified organisms in a step by step approach. Potato Res 51:75–88

    Article  Google Scholar 

  • Jia Z, Sun Y, Yuan L, Tian Q, Luo K (2010) The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnol Lett 32:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan RS, Kameya N, Mii M, Nakamura I (2012) Transgenic Petunia hybrida expressing a synthetic fungal chitinase gene confers disease tolerance to Botrytis cinerea. Plant Biotechnol 29:285–291

    Article  CAS  Google Scholar 

  • Kong LK, Holtz CT, Nairn CJ, Houke H, Powell WA, Baier K, Merkle SA (2014) Application of airlift bioreactors to accelerate genetic transformation in American chestnut. Plan Cell Tissue Organ Cult 117:39–50

    Article  CAS  Google Scholar 

  • Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro J-P, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    Article  PubMed  Google Scholar 

  • Kubisiak TL, Hebard FV, Nelson CD, Zhang J, Bernatzky R, Huang H, Anagnostakis SL, Doudrick RL (1997) Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87:751–759

    Article  CAS  PubMed  Google Scholar 

  • Leclercq J, Lardet L, Martin F, Chapuset T, Oliver G, Montoro P (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Rep 29:513–522

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Pijut PM (2010) Agrobacterium-mediated transformation of mature Prunus serotina (black cherry) and regeneration of transgenic shoots. Plant Cell, Tissue Organ Cult 101:49–57

    Article  CAS  Google Scholar 

  • Mallón R, Valladares S, Corredoira E, Vieitez AM, Vidal N (2014) Overexpression of the chestnut CsTL1 gene coding for a thaumatin-like protein in somatic embryos of Quercus robur. Plant Cell, Tissue Organ Cult 116:141–151

    Article  Google Scholar 

  • Maynard CA, Powell WA, Polin-McGuigan LD, Vieitez AM, Ballester A, Corredoira E, Merkle SA, Andrade A (2008) Chestnut. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic forest tree species. Blackwell, Chichester, pp 169–192

    Chapter  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Ann Rev Phytopathol 42:311–338

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newhouse AE, Polin-McGuigan LD, Baier KA, Valletta KER, Rottmann WH, Tschaplinski TJ, Maynard CA, Powell WA (2014) Transgenic American chestnut show enhanced blight resistance and transmit the trait to T1 progeny. Plant Sci 228:88–97

    Article  CAS  PubMed  Google Scholar 

  • Nonaka S, Ezura H (2014) Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. Front Plant Sci 5:681

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonaka S, Yuhashi K, Takada K, Sugaware M, Minamisawa K, Ezura H (2008) Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol 178:647–656

    Article  CAS  PubMed  Google Scholar 

  • Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570

    Article  CAS  PubMed  Google Scholar 

  • Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Mairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh) Borkh) somatic embryos. Plant Cell, Tissue Organ Cult 84:69–79

    Article  CAS  Google Scholar 

  • Pourhosseini L, Habashi AA, Kermani MJ, Khalighi A, Tahmasbi Z (2012) Agrobacterium-mediated transformation of chitinase gene in Rosa damascena cv. Ghamsar. Ann Biol Res 3:2843–2850

    CAS  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    Article  CAS  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  • Rothrock RE, Polin-McGuigan LD, Newhouse AE, Powell WA, Maynard CA (2007) Plate flooding as an alternative Agrobacterium-mediated transformation method for American chestnut somatic embryos. Plant Cell, Tissue Organ Cult 88:93–99

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schouten H, Krens FA, Jacobsen E (2006a) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006b) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24:753

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell, Tissue Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics and biological research. W. H. Freeman & Company, New York 776 pp

    Google Scholar 

  • Tang G-X, Knecht K, Yang X-F, Qin YB, Zhou W-J, Cai D (2011) A two-step protocol for shoot regeneration from hypocotyl explants of oilseed rape and its application for Agrobacterium-mediated transformation. Biol Plant 55:21–26

    Article  CAS  Google Scholar 

  • Toldi O, Tóth S, Pónyi T, Scott P (2002) An effective and reproducible transformation protocol for the model resurrection plant Craterostigma plantagineum Hochst. Plant Cell Rep 211:63–69

    Google Scholar 

  • Van Alfen NK, Jayners RA, Anagnostakis SL, Day PR (1975) Chestnut blight: biological control by transmissible hypovirulence in Endothia parasitica. Science 189:890–891

    Article  PubMed  Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311

    Article  CAS  PubMed  Google Scholar 

  • Vannini A, Caruso C, Leonardi L, Ruggini E, Chiarot E, Caporale C, Buonocore V (1999) Antifungal properties of chitinases from Castanea sativa against hypovirulent and virulent strains of the chestnut blight fungus Cryphonectria parasitica. Physiol Mol Plant Pathol 55:29–35

    Article  CAS  Google Scholar 

  • Veluthakkal R, Dasgupta MG (2010) Pathogenesis-related genes and proteins in forest tree species. Trees 24:993–1006

    Article  CAS  Google Scholar 

  • Veluthakkal R, Karpaga Raja Sundari B, Ghosh Dasgupta M (2012) Tree chitinases—stress- and developmental-driven gene regulation. For Path 42:271–278

    Article  Google Scholar 

  • Vieitez AM, San José MC, Corredoira E (2011) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols, methods in molecular biology, vol 710. Springer, New York, pp 201–213

    Chapter  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1:199–206

    Article  PubMed  Google Scholar 

  • Wheeler N, Sederoff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Gen Genom 5:181–187

    Article  Google Scholar 

  • Xu R, Li QQ (2008) Protocol: Streamline cloning of genes into binary vectors in Agrobacterium via the Gateway®TOPO vector system. Plant Methods 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan B, Oakes AD, Newhouse AE, Baier KM, Maynard CA, Powell WA (2013) A threshold level of oxalate oxidase transgene expression reduces Cryphonectria parasitica-induced necrosis in a transgenic American chestnut (Castanea dentata) leaf bioassay. Transgenic Res 22:973–982

    Article  Google Scholar 

  • Zhiying W, Fuli Z, Zhanbin W (2010) Transformation of chitinase gene into Populus simonii × P. nigra and chitinase activity of transgenic plants. Sci Silvae Sin 46:147–151

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr Leandro Peña for valuable suggestions and help with the plasmid construction. The authors also thank M.J. Cernadas, R. Montenegro and J.C. Suárez for excellent technical assistance. This research was partially funded by Ministerio de Economía y Competitividad (Spain) through Project AGL2013-47400-C4-3-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Corredoira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corredoira, E., San José, M.C., Vieitez, A.M. et al. Agrobacterium-mediated transformation of European chestnut somatic embryos with a Castanea sativa (Mill.) endochitinase gene. New Forests 47, 669–684 (2016). https://doi.org/10.1007/s11056-016-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-016-9537-5

Keywords

Navigation