Skip to main content
Log in

Neurogenetic Technologies for Research on the Mechanisms Maintaining Memory

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article analyzes possible approaches to studies of the mechanisms maintaining memory at the level of long-term rearrangements of the level of expression of the genes specifically involved in forming and maintaining memories. Several candidate memory maintenance genes are now known. Developments over the last 2–3 years using genetic constructs directed to altering the operation of various genes have demonstrated the possibility of controlling the operation of neural networks in physiological and pathological conditions. Complex locus-specific chromatin rearrangements in the regulatory areas of plasticity genes in response to various external influences (training) may ultimately overcome long-term changes in the expression of these genes and may provide an approach to regulating the material substrates of memory. Subtle modulation of genome operation during memory formation is achieved by factors including locus-specific changes to the epigenome (post-translational modifications of histones and DNA methylation). Further development of approaches to selective epigenetic regulation of the operation of various plasticity genes (epigenome editing) may be of great interest for studies of the physiological functions of the nervous system and correction of behavioral reactions, memory, and a number of pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen, D. Cai, K. Pearce, et al., “Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia,” eLife, 3, e03896 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. J. Triesch, A. D. Vo, and A. S. Hafner, “Competition for synaptic building blocks shapes synaptic plasticity,” eLife, 7, pii: e37836 (2018).

  3. A. Bédécarrats, S. Chen, K. Pearce, et al., “RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia,” eNeuro, 5, No. 3; pii: eNeuro.0038-18.2018 (2018).

  4. J. L. McGaugh, “Memory-a century of consolidation,” Science, 287, No. 5451, 248–251 (2000).

    CAS  PubMed  Google Scholar 

  5. N. E. Weiser and J. K. Kim, “Multigenerational regulation of the Caenorhabditis elegans chromatin landscape by germline small RNAs,” Annu. Rev. Genet., 53 (Review in advance first posted online on May 31, 2019), https://doi.org/ 10.1146/annurev-genet-112618-043505.

  6. Y. Eliezer, N. Deshe, L. Hoch, et al., “A memory circuit for coping with impending adversity,” Curr. Biol., 29, No. 10, 1573-1583.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Katz and S. Shaham, “Learning and memory: Mind over matter in C. elegans,” Curr. Biol., 29, No. 10, R365–R367 (2019).

    CAS  PubMed  Google Scholar 

  8. C. A. Miller and J. D. Sweatt, “Covalent modification of DNA regulates memory formation,” Neuron, 53, No. 6, 857–869 (2007).

    CAS  PubMed  Google Scholar 

  9. C. Van Lint, S. Emiliani, and E. Verdin, “The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation,” Gene Expr., 5, No. 4–5, 245–253 (1996).

    PubMed  Google Scholar 

  10. R. H. Goodman and S. Smolik, “CBP/p300 in cell growth, transformation, and development,” Genes Dev., 14, No. 13, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  11. T. J. Jarome and F. D. Lubin, “Epigenetic mechanisms of memory formation and reconsolidation,” Neurobiol. Learn. Mem., 115, 116–127 (2014).

    CAS  PubMed  Google Scholar 

  12. J. Penney and L. H. Tsai, “Histone deacetylases in memory and cognition,” Sci. Signal, 7, No. 355, re12 (2014).

    PubMed  Google Scholar 

  13. S. Kim and B. K. Kaang, “Epigenetic regulation and chromatin remodeling in learning and memory,” Exp. Mol. Med., 49, No. 1, e281 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. J. M. Levenson, K. J. O’Riordan, K. D. Brown, et al., “Regulation of histone acetylation during memory formation in the hippocampus,” J. Biol. Chem., 279, No. 39, 40,545–40,559 (2004).

  15. J. Gräff, B. T. Woldemichael, D. Berchtold, et al., “Dynamic histone marks in the hippocampus and cortex facilitate memory consolidation,” Nat. Commun., 3, 991 (2012).

    PubMed  Google Scholar 

  16. V. Ranjan, S. Singh, S. A. Siddiqui, et al., “Differential histone acetylation in sub-regions of bed nucleus of the stria terminalis underlies fear consolidation and extinction,” Psychiatry Investig., 14, No. 3, 350–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. S. A. Siddiqui, S. Singh, V. Ranjan, et al., “Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction,” Cell. Mol. Neurobiol., 37, No. 7, 1287–1301 (2017).

    CAS  PubMed  Google Scholar 

  18. C. G. Vecsey, J. D. Hawk, K. M. Lattal, et al., “Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBPdependent transcriptional activation,” J. Neurosci., 27, No. 23, 6128–6140 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. D. P. Stefanko, R. M. Barrett, A. R. Ly, et al., “Modulation of longterm memory for object recognition via HDAC inhibition,” Proc. Natl. Acad. Sci. USA, 106, No. 23, 9447–9452 (2009).

    CAS  PubMed  Google Scholar 

  20. J. D. Hawk, C. Florian, and T. Abel, “Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory,” Learn. Mem., 18, No. 6, 367–370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. H. Villain, C. Florian, and P. Roullet, “HDAC inhibition promotes both initial consolidation and reconsolidation of spatial memory in mice,” Sci. Rep., 6, 27015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. E. Korzus, M. G. Rosenfeld, and M. Mayford, “CBP histone acetyltransferase activity is a critical component of memory consolidation,” Neuron, 42, No. 6, 961–972 (2004).

    CAS  PubMed  Google Scholar 

  23. J. S. Guan, S. J. Haggarty, E. Giacometti, et al., “HDAC2 negatively regulates memory formation and synaptic plasticity,” Nature, 459, No. 7243, 55–60 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Bahari-Javan, A. Maddalena, C. Kerimoglu, et al., “HDAC1 regulates fear extinction in mice,” J. Neurosci., 32, No. 15, 5062–5073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. A. J. Bannister and T. Kouzarides, “Reversing histone methylation,” Nature, 436, No. 7054, 1103–1106 (2005).

    CAS  PubMed  Google Scholar 

  26. S. Gupta, S. Y. Kim, S. Artis, et al., “Histone methylation regulates memory formation,” J. Neurosci., 30, No. 10, 3589–3599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Gupta-Agarwal, A. V. Franklin, T. Deramus, et al., “G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation,” J. Neurosci., 32, No. 16, 5440–5453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Snigdha, G. A. Prieto, A. Petrosyan, et al., “H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus,” J. Neurosci., 36, No. 12, 3611–3622 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. R. Neelamegam, E. L. Ricq, M. Malvaez, et al., “Brain-penetrant LSD1 inhibitors can block memory consolidation,” ACS Chem. Neurosci., 3, No. 2, 120–128 (2012).

    CAS  PubMed  Google Scholar 

  30. J. Wang, F. Telese, Y. Tan, et al., “LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control,” Nat. Neurosci., 18, No. 9, 1256–1264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. O. Castillo-Aguilera, P. Depreux, L. Halby, et al., “DNA methylation targeting: the DNMT/HMT crosstalk challenge,” Biomolecules, 7, No. 1, pii: E3 (2017).

  32. T. C. Sacktor, “Memory maintenance by PKMζ-an evolutionary perspective,” Mol. Brain, 5, 31 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. C. M. Alberini and E. R. Kandel, “The regulation of transcription in memory consolidation,” Cold Spring Harb. Perspect. Biol., 7, No. 1, a021741 (2014).

    PubMed  Google Scholar 

  34. I. M. Mansuy, D. G. Winder, T. M. Moallem, et al., “Inducible and reversible gene expression with the rtTA system for the study of memory,” Neuron, 21, No. 2, 257–265 (1998).

    CAS  PubMed  Google Scholar 

  35. D. G. Winder, I. M. Mansuy, M. Osman, et al., “Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin,” Cell, 92, No. 1, 25–37 (1998).

    CAS  PubMed  Google Scholar 

  36. D. Genoux, U. Haditsch, M. Knobloch, et al., “Protein phosphatase 1 is a molecular constraint on learning and memory,” Nature, 418, No. 6901, 970–975 (2002).

    CAS  PubMed  Google Scholar 

  37. T. C. Sacktor, “How does PKMζ maintain long-term memory?” Nat. Rev. Neurosci., 12, No. 1, 9–15 (2011).

    CAS  PubMed  Google Scholar 

  38. S. Wang, T. Sheng, S. Ren, et al., “Distinct roles of PKCι/λ and PKMζ in the initiation and maintenance of hippocampal long-term potentiation and memory,” Cell Rep., 16, No. 7, 1954–1961 (2016).

    CAS  PubMed  Google Scholar 

  39. P. M. Balaban, “Molecular mechanisms of memory modification,” Zh. Vyssh. Nerv. Deyat., 67, No. 2, 131–140 (2017).

    Google Scholar 

  40. A. A. Borodinova, A. B. Zuzina, and P. M. Balaban, “Role of atypical protein kinases in maintenance of long-term memory and synaptic plasticity,” Biochemistry (Mosc.), 82, No. 3, 243–256 (2017).

    CAS  Google Scholar 

  41. E. Pastalkova, P. Serrano, D. Pinkhasova, et al., “Storage of spatial information by the maintenance mechanism of LTP,” Science, 313, No. 5790, 1141–1144 (2006).

    CAS  PubMed  Google Scholar 

  42. P. Serrano, E. L. Friedman, J. Kenney, et al., “PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories,” PLoS Biol., 6, No. 12, 2698–2706 (2008).

    CAS  PubMed  Google Scholar 

  43. C. Chen, S. Q. Meng, Y. X. Xue, et al., “Epigenetic modification of PKMζ rescues aging-related cognitive impairment,” Sci. Rep., 6, 22096 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. R. Shema, T. C. Sacktor, and Y. Dudai, “Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta,” Science, 317, No. 5840, 951–953 (2007).

    CAS  PubMed  Google Scholar 

  45. R. Shema, S. Hazvi, T. C. Sacktor, and Y. Dudai, “Boundary conditions for the maintenance of memory by PKMzeta in neocortex,” Learn. Mem., 16, No. 2, 122–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Shema, S. Haramati, S. Ron, et al., “Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex,” Science, 331, No. 6021, 1207–1210 (2011).

    CAS  PubMed  Google Scholar 

  47. D. S. Ling, L. S. Benardo, P. A. Serrano, et al., “Protein kinase Mzeta is necessary and sufficient for LTP maintenance,” Nat. Neurosci., 5, No. 4, 295–296 (2002).

    CAS  PubMed  Google Scholar 

  48. A. I. Hernandez, N. Blace, J. F. Crary, et al., “Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory,” J. Biol. Chem., 278, No. 41, 40,305–40,316 (2003).

  49. P. Serrano, Y. Yao, and T. C. Sacktor, “Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation,” J. Neurosci., 25, No. 8, 1979–1984 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. P. Tsokas, C. Hsieh, Y. Yao, et al., “Compensation for PKMζ in longterm potentiation and spatial long-term memory in mutant mice,” eLife, 5, pii: e14846 (2016).

  51. A. A. Borodinova and S. V. Salozhin, “Diversity of proBDNF and mBDNF functions in the central nervous system,” Zh. Vyssh. Nerv. Deyat., 66, No. 1, 3–23 (2016).

    CAS  Google Scholar 

  52. K. Koshibu, J. Gräff, and I. M. Mansuy, “Nuclear protein phosphatase- 1: An epigenetic regulator of fear memory and amygdala longterm potentiation,” Neuroscience, 173, 30–6 (2011).

    CAS  PubMed  Google Scholar 

  53. A. A. Borodinova, M. A. Kuznetsova, V. S. Alekseeva, and P. M. Balaban, “Histone acetylation determines transcription of atypical protein kinases in rat neurons,” Sci. Rep., 9, No. 1, 4332 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. P. V. Nguyen, T. Abel, and E. R. Kandel, “Requirement of a critical period of transcription for induction of a late phase of LTP,” Science, 265, No. 5175, 1104–1107 (1994).

    CAS  PubMed  Google Scholar 

  55. L. M. Igaz, M. R. Vianna, J. H. Medina, and I. Izquierdo, “Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning,” J. Neurosci., 22, No. 15, 6781–6789 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. D. Lefer, E. Perisse, B. Hourcade, et al., “Two waves of transcription are required for long-term memory in the honeybee,” Learn. Mem., 20, No. 1, 29–33 (2012).

    PubMed  Google Scholar 

  57. K. M. Tyssowski, N. R. DeStefino, J. H. Cho, et al., “Different neuronal activity patterns induce different gene expression programs,” Neuron, 98, No. 3, 530–546.e11 (2018).

  58. K. E. Savell, S. V. Bach, M. E. Zipperly, et al., “A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation,” eNeuro, 6, No. 1. pii: eNeuro.0495-18.2019 (2019).

  59. Y. Zheng, W. Shen, J. Zhang, et al., “CRISPR interference-based specific and efficient gene inactivation in the brain,” Nat. Neurosci., 21, No. 3, 447–454 (2018).

    CAS  PubMed  Google Scholar 

  60. J. M. Haenfler, G. Skariah, C. M. Rodriguez, et al., “Targeted reactivation of FMR1 transcription in fragile X syndrome embryonic stem cells,” Front. Mol. Neurosci., 11, 282 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. S. M. Ho, B. J. Hartley, E. Flaherty, et al., “Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-derived NPCs, neurons, and astrocytes,” Stem Cell Reports, 9, No. 2, 615–628 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. V. Baumann, M. Wiesbeck, C. T. Breunig, et al., “Targeted removal of epigenetic barriers during transcriptional reprogramming,” Nat. Commun., 10, No. 1, 2119 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. K. Merschbaecher, J. Haettig, and U. Mueller, “Acetylation-mediated suppression of transcription-independent memory: Bidirectional modulation of memory by acetylation,” PLoS One, 7, No. 9, e45131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. H. Beldjoud, A. Barsegyan, and B. Roozendaal, “Noradrenergic activation of the basolateral amygdala enhances object recognition memory and induces chromatin remodeling in the insular cortex,” Front. Behav. Neurosci., 9, 108 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. I. B. Hilton, A. M. D’Ippolito, C. M. Vockley, et al., “Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers,” Nat. Biotechnol., 33, No. 5, 510–517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. J. Y. Joo, K. Schaukowitch, L. Farbiak, et al., “Stimulus-specific combinatorial functionality of neuronal c-fos enhancers,” Nat. Neurosci., 19, No. 1, 75–83 (2016).

    CAS  PubMed  Google Scholar 

  67. L. F. Chen, Y. T. Lin, D. A. Gallegos, et al., “Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-Inducible genes,” Cell Rep., 26, No. 5, 1174–1188.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. H. S. Fukushima, H. Takeda, and R. Nakamura, “Targeted in vivo epigenome editing of H3K27me3,” Epigenetics Chromatin, 12, No. 1, 17 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. C. Kuscu, R. Mammadov, A. Czikora, et al., “Temporal and spatial epigenome editing allows precise gene regulation in mammalian cells,” J. Mol. Biol., 431, No. 1, 111–121 (2019).

    CAS  PubMed  Google Scholar 

  70. H. O’Geen, S. L. Bates, S. S. Carter, et al., “Ezh2-dCas9 and KRABdCas9 enable engineering of epigenetic memory in a context-dependent manner,” Epigenetics Chromatin, 12, No. 1, 26 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. B. Kantor, L. Tagliafierro, J. Gu, et al., “Downregulation of SNCA expression by targeted editing of DNA methylation: A potential strategy for precision therapy in PD,” Mol. Ther., 26, No. 11, 2638–2649 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. X. S. Liu, H. Wu, M. Krzisch, et al., “Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene,” Cell, 172, No. 5, 979–992.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. F. Noack, A. Pataskar, M. Schneider, et al., “Assessment and sitespecific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis,” Life Sci. Alliance, 2, No. 2. pii: e201900331 (2019).

  74. Y. Nihongaki, Y. Furuhata, T. Otabe, et al., “CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation,” Nat. Methods, 14, No. 10, 963–966 (2017).

    CAS  PubMed  Google Scholar 

  75. J. Shao, M. Wang, G. Yu, et al., “Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation,” Proc. Natl. Acad. Sci. USA, 115, No. 29, E6722–E6730 (2018).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Balaban.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 105, No. 11, pp. 1392–1405, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaban, P.M., Borodinova, A.A. Neurogenetic Technologies for Research on the Mechanisms Maintaining Memory. Neurosci Behav Physi 50, 1057–1064 (2020). https://doi.org/10.1007/s11055-020-01005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-020-01005-x

Keywords

Navigation